Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from tqdm import tqdm | |
| def calculate_fp8_maxval(exp_bits=4, mantissa_bits=3, sign_bits=1): | |
| """ | |
| Calculate the maximum representable value in FP8 format. | |
| Default is E4M3 format (4-bit exponent, 3-bit mantissa, 1-bit sign). | |
| Args: | |
| exp_bits (int): Number of exponent bits | |
| mantissa_bits (int): Number of mantissa bits | |
| sign_bits (int): Number of sign bits (0 or 1) | |
| Returns: | |
| float: Maximum value representable in FP8 format | |
| """ | |
| assert exp_bits + mantissa_bits + sign_bits == 8, "Total bits must be 8" | |
| # Calculate exponent bias | |
| bias = 2 ** (exp_bits - 1) - 1 | |
| # Calculate maximum mantissa value | |
| mantissa_max = 1.0 | |
| for i in range(mantissa_bits - 1): | |
| mantissa_max += 2 ** -(i + 1) | |
| # Calculate maximum value | |
| max_value = mantissa_max * (2 ** (2**exp_bits - 1 - bias)) | |
| return max_value | |
| def quantize_tensor_to_fp8(tensor, scale, exp_bits=4, mantissa_bits=3, sign_bits=1, max_value=None, min_value=None): | |
| """ | |
| Quantize a tensor to FP8 format. | |
| Args: | |
| tensor (torch.Tensor): Tensor to quantize | |
| scale (float or torch.Tensor): Scale factor | |
| exp_bits (int): Number of exponent bits | |
| mantissa_bits (int): Number of mantissa bits | |
| sign_bits (int): Number of sign bits | |
| Returns: | |
| tuple: (quantized_tensor, scale_factor) | |
| """ | |
| # Create scaled tensor | |
| scaled_tensor = tensor / scale | |
| # Calculate FP8 parameters | |
| bias = 2 ** (exp_bits - 1) - 1 | |
| if max_value is None: | |
| # Calculate max and min values | |
| max_value = calculate_fp8_maxval(exp_bits, mantissa_bits, sign_bits) | |
| min_value = -max_value if sign_bits > 0 else 0.0 | |
| # Clamp tensor to range | |
| clamped_tensor = torch.clamp(scaled_tensor, min_value, max_value) | |
| # Quantization process | |
| abs_values = torch.abs(clamped_tensor) | |
| nonzero_mask = abs_values > 0 | |
| # Calculate logF scales (only for non-zero elements) | |
| log_scales = torch.zeros_like(clamped_tensor) | |
| if nonzero_mask.any(): | |
| log_scales[nonzero_mask] = torch.floor(torch.log2(abs_values[nonzero_mask]) + bias).detach() | |
| # Limit log scales and calculate quantization factor | |
| log_scales = torch.clamp(log_scales, min=1.0) | |
| quant_factor = 2.0 ** (log_scales - mantissa_bits - bias) | |
| # Quantize and dequantize | |
| quantized = torch.round(clamped_tensor / quant_factor) * quant_factor | |
| return quantized, scale | |
| def optimize_state_dict_with_fp8( | |
| state_dict, calc_device, target_layer_keys=None, exclude_layer_keys=None, exp_bits=4, mantissa_bits=3, move_to_device=False | |
| ): | |
| """ | |
| Optimize Linear layer weights in a model's state dict to FP8 format. | |
| Args: | |
| state_dict (dict): State dict to optimize, replaced in-place | |
| calc_device (str): Device to quantize tensors on | |
| target_layer_keys (list, optional): Layer key patterns to target (None for all Linear layers) | |
| exclude_layer_keys (list, optional): Layer key patterns to exclude | |
| exp_bits (int): Number of exponent bits | |
| mantissa_bits (int): Number of mantissa bits | |
| move_to_device (bool): Move optimized tensors to the calculating device | |
| Returns: | |
| dict: FP8 optimized state dict | |
| """ | |
| if exp_bits == 4 and mantissa_bits == 3: | |
| fp8_dtype = torch.float8_e4m3fn | |
| elif exp_bits == 5 and mantissa_bits == 2: | |
| fp8_dtype = torch.float8_e5m2 | |
| else: | |
| raise ValueError(f"Unsupported FP8 format: E{exp_bits}M{mantissa_bits}") | |
| # Calculate FP8 max value | |
| max_value = calculate_fp8_maxval(exp_bits, mantissa_bits) | |
| min_value = -max_value # this function supports only signed FP8 | |
| # Create optimized state dict | |
| optimized_count = 0 | |
| # Enumerate tarket keys | |
| target_state_dict_keys = [] | |
| for key in state_dict.keys(): | |
| # Check if it's a weight key and matches target patterns | |
| is_target = (target_layer_keys is None or any(pattern in key for pattern in target_layer_keys)) and key.endswith(".weight") | |
| is_excluded = exclude_layer_keys is not None and any(pattern in key for pattern in exclude_layer_keys) | |
| is_target = is_target and not is_excluded | |
| if is_target and isinstance(state_dict[key], torch.Tensor): | |
| target_state_dict_keys.append(key) | |
| # Process each key | |
| for key in tqdm(target_state_dict_keys): | |
| value = state_dict[key] | |
| # Save original device and dtype | |
| original_device = value.device | |
| original_dtype = value.dtype | |
| # Move to calculation device | |
| if calc_device is not None: | |
| value = value.to(calc_device) | |
| # Calculate scale factor | |
| scale = torch.max(torch.abs(value.flatten())) / max_value | |
| # print(f"Optimizing {key} with scale: {scale}") | |
| # Quantize weight to FP8 | |
| quantized_weight, _ = quantize_tensor_to_fp8(value, scale, exp_bits, mantissa_bits, 1, max_value, min_value) | |
| # Add to state dict using original key for weight and new key for scale | |
| fp8_key = key # Maintain original key | |
| scale_key = key.replace(".weight", ".scale_weight") | |
| quantized_weight = quantized_weight.to(fp8_dtype) | |
| if not move_to_device: | |
| quantized_weight = quantized_weight.to(original_device) | |
| scale_tensor = torch.tensor([scale], dtype=original_dtype, device=quantized_weight.device) | |
| state_dict[fp8_key] = quantized_weight | |
| state_dict[scale_key] = scale_tensor | |
| optimized_count += 1 | |
| if calc_device is not None: # optimized_count % 10 == 0 and | |
| # free memory on calculation device | |
| torch.cuda.empty_cache() # TODO check device typ | |
| print(f"Number of optimized Linear layers: {optimized_count}") | |
| return state_dict | |
| def fp8_linear_forward_patch(self: nn.Linear, x, use_scaled_mm=False, max_value=None): | |
| """ | |
| Patched forward method for Linear layers with FP8 weights. | |
| Args: | |
| self: Linear layer instance | |
| x (torch.Tensor): Input tensor | |
| use_scaled_mm (bool): Use scaled_mm for FP8 Linear layers, requires SM 8.9+ (RTX 40 series) | |
| max_value (float): Maximum value for FP8 quantization. If None, no quantization is applied for input tensor. | |
| Returns: | |
| torch.Tensor: Result of linear transformation | |
| """ | |
| if use_scaled_mm: | |
| input_dtype = x.dtype | |
| original_weight_dtype = self.scale_weight.dtype | |
| weight_dtype = self.weight.dtype | |
| target_dtype = torch.float8_e5m2 | |
| assert weight_dtype == torch.float8_e4m3fn, "Only FP8 E4M3FN format is supported" | |
| assert x.ndim == 3, "Input tensor must be 3D (batch_size, seq_len, hidden_dim)" | |
| if max_value is None: | |
| # no input quantization | |
| scale_x = torch.tensor(1.0, dtype=torch.float32, device=x.device) | |
| else: | |
| # calculate scale factor for input tensor | |
| scale_x = (torch.max(torch.abs(x.flatten())) / max_value).to(torch.float32) | |
| # quantize input tensor to FP8: this seems to consume a lot of memory | |
| x, _ = quantize_tensor_to_fp8(x, scale_x, 5, 2, 1, max_value, -max_value) | |
| original_shape = x.shape | |
| x = x.reshape(-1, x.shape[2]).to(target_dtype) | |
| weight = self.weight.t() | |
| scale_weight = self.scale_weight.to(torch.float32) | |
| if self.bias is not None: | |
| # float32 is not supported with bias in scaled_mm | |
| o = torch._scaled_mm(x, weight, out_dtype=original_weight_dtype, bias=self.bias, scale_a=scale_x, scale_b=scale_weight) | |
| else: | |
| o = torch._scaled_mm(x, weight, out_dtype=input_dtype, scale_a=scale_x, scale_b=scale_weight) | |
| return o.reshape(original_shape[0], original_shape[1], -1).to(input_dtype) | |
| else: | |
| # Dequantize the weight | |
| original_dtype = self.scale_weight.dtype | |
| dequantized_weight = self.weight.to(original_dtype) * self.scale_weight | |
| # Perform linear transformation | |
| if self.bias is not None: | |
| output = F.linear(x, dequantized_weight, self.bias) | |
| else: | |
| output = F.linear(x, dequantized_weight) | |
| return output | |
| def apply_fp8_monkey_patch(model, optimized_state_dict, use_scaled_mm=False): | |
| """ | |
| Apply monkey patching to a model using FP8 optimized state dict. | |
| Args: | |
| model (nn.Module): Model instance to patch | |
| optimized_state_dict (dict): FP8 optimized state dict | |
| use_scaled_mm (bool): Use scaled_mm for FP8 Linear layers, requires SM 8.9+ (RTX 40 series) | |
| Returns: | |
| nn.Module: The patched model (same instance, modified in-place) | |
| """ | |
| # # Calculate FP8 float8_e5m2 max value | |
| # max_value = calculate_fp8_maxval(5, 2) | |
| max_value = None # do not quantize input tensor | |
| # Find all scale keys to identify FP8-optimized layers | |
| scale_keys = [k for k in optimized_state_dict.keys() if k.endswith(".scale_weight")] | |
| # Enumerate patched layers | |
| patched_module_paths = set() | |
| for scale_key in scale_keys: | |
| # Extract module path from scale key (remove .scale_weight) | |
| module_path = scale_key.rsplit(".scale_weight", 1)[0] | |
| patched_module_paths.add(module_path) | |
| patched_count = 0 | |
| # Apply monkey patch to each layer with FP8 weights | |
| for name, module in model.named_modules(): | |
| # Check if this module has a corresponding scale_weight | |
| has_scale = name in patched_module_paths | |
| # Apply patch if it's a Linear layer with FP8 scale | |
| if isinstance(module, nn.Linear) and has_scale: | |
| # register the scale_weight as a buffer to load the state_dict | |
| module.register_buffer("scale_weight", torch.tensor(1.0, dtype=module.weight.dtype)) | |
| # Create a new forward method with the patched version. | |
| def new_forward(self, x): | |
| return fp8_linear_forward_patch(self, x, use_scaled_mm, max_value) | |
| # Bind method to module | |
| module.forward = new_forward.__get__(module, type(module)) | |
| patched_count += 1 | |
| print(f"Number of monkey-patched Linear layers: {patched_count}") | |
| return model | |
