Upload 9 files
Browse files- backend/__pycache__/api.cpython-310.pyc +0 -0
- backend/api.py +74 -0
- backend/dataset_chatbot_template.xlsx +0 -0
- backend/models/bert-base-multilingual-cased/config.json +49 -0
- backend/models/bert-base-multilingual-cased/special_tokens_map.json +7 -0
- backend/models/bert-base-multilingual-cased/tokenizer.json +0 -0
- backend/models/bert-base-multilingual-cased/tokenizer_config.json +56 -0
- backend/models/bert-base-multilingual-cased/vocab.txt +0 -0
backend/__pycache__/api.cpython-310.pyc
ADDED
|
Binary file (2.77 kB). View file
|
|
|
backend/api.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
import torch
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
# === 1. Setup API dan CORS ===
|
| 10 |
+
app = FastAPI()
|
| 11 |
+
app.add_middleware(
|
| 12 |
+
CORSMiddleware,
|
| 13 |
+
allow_origins=["*"],
|
| 14 |
+
allow_credentials=True,
|
| 15 |
+
allow_methods=["*"],
|
| 16 |
+
allow_headers=["*"],
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# === 2. Global Setup (Model, Tokenizer, Data) ===
|
| 20 |
+
BASE_DIR = Path(__file__).resolve().parent
|
| 21 |
+
MODEL_DIR = BASE_DIR / "bert_chatbot_model" # folder, bukan .onnx
|
| 22 |
+
DATASET_PATH = BASE_DIR / "dataset_chatbot_template.xlsx"
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(str(MODEL_DIR))
|
| 26 |
+
model = AutoModelForSequenceClassification.from_pretrained(str(MODEL_DIR))
|
| 27 |
+
df_jawaban = pd.read_excel(DATASET_PATH)
|
| 28 |
+
|
| 29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
+
model.to(device)
|
| 31 |
+
model.eval()
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"❌ FATAL ERROR: {e}")
|
| 34 |
+
|
| 35 |
+
responses = {
|
| 36 |
+
"about_me": "I am a passionate developer specializing in AI and web development.",
|
| 37 |
+
"skills": "My main skills are HTML5, CSS3, JavaScript, Laravel, Node.js, Database, TensorFlow, PyTorch, Firebase, and Jupyter Notebook.",
|
| 38 |
+
"projects": "Some of my projects are Mobile Apps Bald Detection and Jupyter Notebook Bald Detection.",
|
| 39 |
+
"experience": "I have worked as IT Support, AI Engineer, and Freelancer on multiple projects.",
|
| 40 |
+
"career_goal": "My career goal is to become a Full Stack Developer and Machine Learning Engineer.",
|
| 41 |
+
"greeting": "Hello! How can I help you regarding this portfolio?",
|
| 42 |
+
"fallback": "I'm sorry, I don't understand. Please ask another question."
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
class ChatRequest(BaseModel):
|
| 46 |
+
text: str
|
| 47 |
+
|
| 48 |
+
@app.get("/")
|
| 49 |
+
async def root():
|
| 50 |
+
return {"message": "🚀 Chatbot API running on Hugging Face"}
|
| 51 |
+
|
| 52 |
+
@app.post("/chatbot")
|
| 53 |
+
async def chat(req: ChatRequest):
|
| 54 |
+
if 'model' not in globals():
|
| 55 |
+
return {"response": responses["fallback"], "intent": "error_loading"}
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
inputs = tokenizer(req.text, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
outputs = model(**inputs)
|
| 61 |
+
pred_id = torch.argmax(outputs.logits, dim=1).item()
|
| 62 |
+
|
| 63 |
+
intent = model.config.id2label.get(pred_id, "fallback")
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
jawaban = df_jawaban.loc[df_jawaban['Intent'] == intent, 'Jawaban_ID'].iloc[0]
|
| 67 |
+
except IndexError:
|
| 68 |
+
jawaban = responses.get(intent, responses["fallback"])
|
| 69 |
+
|
| 70 |
+
return {"intent": intent, "response": jawaban}
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"❌ Runtime Error: {e}")
|
| 74 |
+
return {"response": "Internal server error"}
|
backend/dataset_chatbot_template.xlsx
ADDED
|
Binary file (11 kB). View file
|
|
|
backend/models/bert-base-multilingual-cased/config.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"directionality": "bidi",
|
| 8 |
+
"dtype": "float32",
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "about_me",
|
| 14 |
+
"1": "career_goal",
|
| 15 |
+
"2": "experience",
|
| 16 |
+
"3": "fallback",
|
| 17 |
+
"4": "greeting",
|
| 18 |
+
"5": "projects",
|
| 19 |
+
"6": "skills"
|
| 20 |
+
},
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"intermediate_size": 3072,
|
| 23 |
+
"label2id": {
|
| 24 |
+
"about_me": 0,
|
| 25 |
+
"career_goal": 1,
|
| 26 |
+
"experience": 2,
|
| 27 |
+
"fallback": 3,
|
| 28 |
+
"greeting": 4,
|
| 29 |
+
"projects": 5,
|
| 30 |
+
"skills": 6
|
| 31 |
+
},
|
| 32 |
+
"layer_norm_eps": 1e-12,
|
| 33 |
+
"max_position_embeddings": 512,
|
| 34 |
+
"model_type": "bert",
|
| 35 |
+
"num_attention_heads": 12,
|
| 36 |
+
"num_hidden_layers": 12,
|
| 37 |
+
"pad_token_id": 0,
|
| 38 |
+
"pooler_fc_size": 768,
|
| 39 |
+
"pooler_num_attention_heads": 12,
|
| 40 |
+
"pooler_num_fc_layers": 3,
|
| 41 |
+
"pooler_size_per_head": 128,
|
| 42 |
+
"pooler_type": "first_token_transform",
|
| 43 |
+
"position_embedding_type": "absolute",
|
| 44 |
+
"problem_type": "single_label_classification",
|
| 45 |
+
"transformers_version": "4.56.1",
|
| 46 |
+
"type_vocab_size": 2,
|
| 47 |
+
"use_cache": true,
|
| 48 |
+
"vocab_size": 119547
|
| 49 |
+
}
|
backend/models/bert-base-multilingual-cased/special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
backend/models/bert-base-multilingual-cased/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
backend/models/bert-base-multilingual-cased/tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": false,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "BertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
backend/models/bert-base-multilingual-cased/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|