File size: 40,671 Bytes
62a0596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
#!/usr/bin/env python3
import os
import sys
import time
import random
import logging
import requests
import json
import re
import subprocess
import shutil
from datetime import datetime
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from bs4 import BeautifulSoup
import html2text
import kaggle
# Importation des configurations
from config import app_config as config
# Configuration de la page Streamlit
st.set_page_config(
page_title="DevSecOps Data Bot",
layout="wide",
initial_sidebar_state="expanded"
)
# Configuration du logging
def setup_logging():
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
log_file = log_dir / f"data_collector_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler(sys.stdout)
]
)
return logging.getLogger(__name__)
logger = setup_logging()
# Création des répertoires et scripts nécessaires
def create_initial_setup():
dirs = [
"data/devsecops/qa", "data/security/qa", "data/development/qa",
"data/data_analysis/qa", "logs", "config", "server", "scripts",
"models", "llama.cpp", ".kaggle"
]
for dir_path in dirs:
Path(dir_path).mkdir(parents=True, exist_ok=True)
download_script = Path("scripts/download_with_aria2c.sh")
if not download_script.exists():
with open(download_script, 'w') as f:
f.write("""#!/bin/bash
URL=$1
OUTPUT=$2
MAX_RETRIES=5
for i in $(seq 1 $MAX_RETRIES); do
echo "Tentative $i/$MAX_RETRIES: $URL"
aria2c -x 16 -s 16 -d "$(dirname "$OUTPUT")" -o "$(basename "$OUTPUT")" "$URL" && break
sleep 10
done
""")
os.chmod(download_script, 0o755)
llama_dir = Path("llama.cpp")
if not llama_dir.exists():
st.info("Installation de llama.cpp...")
subprocess.run(["git", "clone", "https://github.com/ggerganov/llama.cpp.git", str(llama_dir)])
os.chdir(str(llama_dir))
subprocess.run(["mkdir", "-p", "build"])
os.chdir("build")
subprocess.run(["cmake", "..", "-DLLAMA_CURL=1"])
subprocess.run(["cmake", "--build", ".", "--config", "Release"])
os.chdir(Path(__file__).parent)
model_path = Path("models/qwen2.5-1.5b-instruct-q8_0.gguf")
if not model_path.exists():
st.warning("Le modèle GGUF n'existe pas. Téléchargement en cours...")
Path("models").mkdir(exist_ok=True)
model_url = "https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF/resolve/main/qwen2.5-1.5b-instruct-q8_0.gguf"
try:
subprocess.run(["bash", str(download_script), model_url, str(model_path)])
if model_path.exists():
st.success("Modèle GGUF téléchargé avec succès!")
else:
st.error("Échec du téléchargement du modèle GGUF. Veuillez le placer manuellement dans le dossier models/")
except Exception as e:
st.error(f"Erreur lors du téléchargement du modèle: {str(e)}")
# Convertisseur HTML vers texte
h = html2text.HTML2Text()
h.ignore_links = False
h.ignore_images = True
h.ignore_emphasis = False
h.body_width = 0
# Fonctions pour le serveur LLM (llama.cpp)
def check_server_status():
try:
response = requests.get("http://localhost:8080/health", timeout=2)
if response.status_code == 200:
st.session_state.server_status = "Actif"
return True
else:
st.session_state.server_status = "Inactif"
return False
except requests.exceptions.RequestException:
st.session_state.server_status = "Inactif"
return False
def start_llm_server():
if check_server_status():
st.info("Le serveur llama.cpp est déjà en cours d'exécution.")
return
model_path = Path("models/qwen2.5-1.5b-instruct-q8_0.gguf")
if not model_path.exists():
st.error("Le modèle GGUF n'existe pas. Veuillez le placer dans le dossier models/.")
return
llama_server = Path("llama.cpp/build/bin/llama-server")
if not llama_server.exists():
st.error("llama.cpp n'est pas compilé. Veuillez compiler llama.cpp d'abord.")
return
start_script = Path("server/start_server.sh")
if not start_script.exists():
with open(start_script, 'w') as f:
f.write(f"""#!/bin/bash
MODEL_PATH="{str(model_path)}"
if [ ! -f "$MODEL_PATH" ]; then
echo "Le modèle GGUF est introuvable à: $MODEL_PATH"
exit 1
fi
"{str(llama_server)}" \\
-m "$MODEL_PATH" \\
--port 8080 \\
--host 0.0.0.0 \\
-c 4096 \\
-ngl 999 \\
--threads 8 \\
> "logs/llama_server.log" 2>&1 &
echo $! > "server/server.pid"
""")
os.chmod(start_script, 0o755)
try:
subprocess.Popen(["bash", str(start_script)])
st.success("Le serveur llama.cpp est en cours de démarrage...")
time.sleep(5)
if check_server_status():
st.success("Serveur llama.cpp démarré avec succès!")
else:
st.error("Le serveur n'a pas pu démarrer. Vérifiez les logs dans le dossier logs/.")
except Exception as e:
st.error(f"Erreur lors du démarrage du serveur: {str(e)}")
def stop_llm_server():
stop_script = Path("server/stop_server.sh")
if not stop_script.exists():
with open(stop_script, 'w') as f:
f.write("""#!/bin/bash
PID_FILE="server/server.pid"
if [ -f "$PID_FILE" ]; then
PID=$(cat "$PID_FILE")
kill $PID
rm "$PID_FILE"
echo "Serveur llama.cpp arrêté."
else
echo "Aucun PID de serveur trouvé."
fi
""")
os.chmod(stop_script, 0o755)
try:
subprocess.run(["bash", str(stop_script)])
st.success("Le serveur llama.cpp est en cours d'arrêt...")
time.sleep(2)
if not check_server_status():
st.success("Serveur llama.cpp arrêté avec succès!")
else:
st.warning("Le serveur n'a pas pu être arrêté correctement.")
except Exception as e:
st.error(f"Erreur lors de l'arrêt du serveur: {str(e)}")
def load_prompts():
prompts_file = Path("config/prompts.json")
if not prompts_file.exists():
default_prompts = {
"enrich_qa": {
"system": "Tu es un expert DevSecOps. Améliore cette paire question/réponse en y ajoutant des tags, des signatures d'attaques potentielles, et en structurant les informations. Réponds uniquement avec un objet JSON.",
"prompt_template": "Question originale: {question}\nRéponse originale: {answer}\nContexte: {context}\n\nFournis une version améliorée sous forme de JSON:\n{{\n \"question\": \"question améliorée\",\n \"answer\": \"réponse améliorée\",\n \"tags\": [\"tag1\", \"tag2\"],\n \"attack_signatures\": [\"signature1\", \"signature2\"]\n}}"
},
"analyze_relevance": {
"system": "Analyse ce contenu et détermine s'il est pertinent pour DevSecOps. Si pertinent, extrais les signatures d'attaques connues. Réponds uniquement avec un objet JSON.",
"prompt_template": "Contenu: {content}...\n\nRéponds sous forme de JSON:\n{{\n \"relevant\": true,\n \"attack_signatures\": [\"signature1\", \"signature2\"],\n \"security_tags\": [\"tag1\", \"tag2\"],\n \"it_relevance_score\": 0-100\n}}"
},
"generate_queries": {
"system": "Analyse les données actuelles et génère 5 nouvelles requêtes de recherche pour trouver plus de contenu DevSecOps pertinent, en particulier des signatures d'attaques et vulnérabilités. Réponds uniquement avec un objet JSON.",
"prompt_template": "Données actuelles: {current_data}...\n\nRéponds sous forme de JSON:\n{{\n \"queries\": [\"query1\", \"query2\", \"query3\", \"query4\", \"query5\"]\n}}"
}
}
with open(prompts_file, 'w') as f:
json.dump(default_prompts, f, indent=2)
with open(prompts_file, 'r', encoding='utf-8') as f:
return json.load(f)
PROMPTS = load_prompts()
class IAEnricher:
def __init__(self):
self.server_url = config.LLM_SERVER_URL
self.available = check_server_status()
if self.available:
logger.info("Serveur llama.cpp détecté et prêt.")
else:
logger.warning("Serveur llama.cpp non disponible. Les fonctionnalités d'IA seront désactivées.")
def _get_qwen_response(self, prompt, **kwargs):
if not self.available:
return None
payload = {
"prompt": prompt,
"n_predict": kwargs.get('n_predict', 512),
"temperature": kwargs.get('temperature', 0.7),
"stop": ["<|im_end|>", "</s>"]
}
try:
response = requests.post(self.server_url, json=payload, timeout=60)
if response.status_code == 200:
return response.json().get('content', '')
else:
logger.error(f"Erreur du serveur LLM: {response.status_code} - {response.text}")
return None
except requests.exceptions.RequestException as e:
logger.error(f"Erreur de connexion au serveur LLM: {str(e)}")
return None
def enrich_qa_pair(self, question, answer, context=""):
if not self.available or not st.session_state.enable_enrichment:
return question, answer, [], []
prompt_template = PROMPTS.get("enrich_qa", {}).get("prompt_template", "")
system_prompt = PROMPTS.get("enrich_qa", {}).get("system", "")
full_prompt = f"{system_prompt}\n\n{prompt_template.format(question=question, answer=answer, context=context[:500])}"
response_text = self._get_qwen_response(full_prompt, n_predict=1024)
if response_text:
try:
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
enriched_data = json.loads(json_match.group())
return (
enriched_data.get('question', question),
enriched_data.get('answer', answer),
enriched_data.get('tags', []),
enriched_data.get('attack_signatures', [])
)
except json.JSONDecodeError as e:
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
return question, answer, [], []
def analyze_content_relevance(self, content):
if not self.available or not st.session_state.enable_enrichment:
return True, [], [], 50
prompt_template = PROMPTS.get("analyze_relevance", {}).get("prompt_template", "")
system_prompt = PROMPTS.get("analyze_relevance", {}).get("system", "")
full_prompt = f"{system_prompt}\n\n{prompt_template.format(content=content[:1500])}"
response_text = self._get_qwen_response(full_prompt, n_predict=256, temperature=st.session_state.temperature)
if response_text:
try:
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
analysis = json.loads(json_match.group())
return (
analysis.get('relevant', True),
analysis.get('attack_signatures', []),
analysis.get('security_tags', []),
analysis.get('it_relevance_score', 50)
)
except json.JSONDecodeError as e:
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
return True, [], [], 50
def generate_adaptive_queries(self, current_data):
if not self.available or not st.session_state.enable_enrichment:
return []
prompt_template = PROMPTS.get("generate_queries", {}).get("prompt_template", "")
system_prompt = PROMPTS.get("generate_queries", {}).get("system", "")
full_prompt = f"{system_prompt}\n\n{prompt_template.format(current_data=current_data[:1000])}"
response_text = self._get_qwen_response(full_prompt, n_predict=st.session_state.n_predict)
if response_text:
try:
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
queries_data = json.loads(json_match.group())
return queries_data.get('queries', [])
except json.JSONDecodeError as e:
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
return []
ia_enricher = IAEnricher()
def check_api_keys():
keys = {
'GITHUB_API_TOKEN': os.getenv('GITHUB_API_TOKEN'),
'HUGGINGFACE_API_TOKEN': os.getenv('HUGGINGFACE_API_TOKEN'),
'NVD_API_KEY': os.getenv('NVD_API_KEY'),
'STACK_EXCHANGE_API_KEY': os.getenv('STACK_EXCHANGE_API_KEY')
}
valid_keys = {k: v for k, v in keys.items() if v and v != f'your_{k.lower()}_here'}
config.USE_API_KEYS = len(valid_keys) == len(keys)
if not config.USE_API_KEYS:
missing = set(keys.keys()) - set(valid_keys.keys())
logger.warning(f"Clés d'API manquantes ou non configurées: {', '.join(missing)}")
logger.warning("Le bot fonctionnera en mode dégradé avec des pauses plus longues.")
else:
logger.info("Toutes les clés d'API sont configurées.")
return config.USE_API_KEYS
def make_request(url, headers=None, params=None, is_api_call=True):
global REQUEST_COUNT
pause_factor = 1 if config.USE_API_KEYS else 2
if config.REQUEST_COUNT >= config.MAX_REQUESTS_BEFORE_PAUSE:
pause_time = random.uniform(config.MIN_PAUSE * pause_factor, config.MAX_PAUSE * pause_factor)
logger.info(f"Pause de {pause_time:.2f} secondes après {config.REQUEST_COUNT} requêtes...")
time.sleep(pause_time)
config.REQUEST_COUNT = 0
try:
response = requests.get(url, headers=headers, params=params, timeout=30)
config.REQUEST_COUNT += 1
if response.status_code == 200:
return response
elif response.status_code in [401, 403]:
logger.warning(f"Accès non autorisé à {url}. Vérifiez vos clés d'API.")
return None
elif response.status_code == 429:
retry_after = int(response.headers.get('Retry-After', 10))
logger.warning(f"Limite de débit atteinte. Pause de {retry_after} secondes...")
time.sleep(retry_after)
return make_request(url, headers, params, is_api_call)
else:
logger.warning(f"Statut HTTP {response.status_code} pour {url}")
return None
except requests.exceptions.RequestException as e:
logger.error(f"Erreur lors de la requête à {url}: {str(e)}")
return None
def clean_html(html_content):
if not html_content:
return ""
text = h.handle(html_content)
text = re.sub(r'\s+', ' ', text).strip()
return text
def save_qa_pair(question, answer, category, subcategory, source, attack_signatures=None, tags=None):
global TOTAL_QA_PAIRS
if ia_enricher.available and st.session_state.enable_enrichment:
enriched_question, enriched_answer, enriched_tags, enriched_signatures = ia_enricher.enrich_qa_pair(
question, answer, f"{category}/{subcategory}"
)
question = enriched_question
answer = enriched_answer
tags = list(set((tags or []) + enriched_tags))
attack_signatures = list(set((attack_signatures or []) + enriched_signatures))
save_dir = Path("data") / category / "qa"
save_dir.mkdir(parents=True, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{subcategory}_{source}_{TOTAL_QA_PAIRS}_{timestamp}.json"
filename = re.sub(r'[^\w\s-]', '', filename).replace(' ', '_')
qa_data = {
"question": question,
"answer": answer,
"category": category,
"subcategory": subcategory,
"source": source,
"timestamp": timestamp,
"attack_signatures": attack_signatures or [],
"tags": tags or []
}
try:
with open(save_dir / filename, "w", encoding="utf-8") as f:
json.dump(qa_data, f, indent=2, ensure_ascii=False)
config.TOTAL_QA_PAIRS += 1
st.session_state.total_qa_pairs = config.TOTAL_QA_PAIRS
st.session_state.qa_data.append(qa_data)
logger.info(f"Paire Q/R sauvegardée: {filename} (Total: {config.TOTAL_QA_PAIRS})")
st.session_state.logs.append(f"Sauvegardé: {filename}")
except Exception as e:
logger.error(f"Erreur lors de la sauvegarde du fichier {filename}: {str(e)}")
def collect_kaggle_data(queries):
logger.info("Début de la collecte des données Kaggle...")
kaggle_dir = Path(".kaggle")
kaggle_json = kaggle_dir / "kaggle.json"
if not kaggle_json.exists():
logger.warning("Fichier kaggle.json non trouvé. Veuillez le placer dans le dossier .kaggle/")
return
os.environ['KAGGLE_CONFIG_DIR'] = str(kaggle_dir.absolute())
try:
kaggle.api.authenticate()
except Exception as e:
logger.error(f"Erreur d'authentification Kaggle: {str(e)}")
return
search_queries = queries.split('\n') if queries else ["cybersecurity", "vulnerability"]
if ia_enricher.available and st.session_state.enable_enrichment:
adaptive_queries = ia_enricher.generate_adaptive_queries("Initial data keywords: " + ", ".join(search_queries))
search_queries.extend(adaptive_queries)
for query in list(set(search_queries)):
logger.info(f"Recherche de datasets Kaggle pour: {query}")
try:
datasets = kaggle.api.dataset_list(search=query, max_results=5)
for dataset in datasets:
dataset_ref = dataset.ref
if ia_enricher.available and st.session_state.enable_enrichment:
is_relevant, _, _, relevance_score = ia_enricher.analyze_content_relevance(dataset.title + " " + dataset.subtitle)
if not is_relevant or relevance_score < st.session_state.min_relevance:
logger.info(f"Dataset non pertinent ({relevance_score}%): {dataset_ref}. Ignoré.")
continue
logger.info(f"Traitement du dataset: {dataset_ref}")
download_dir = Path("data") / "security" / "kaggle" / dataset_ref.replace('/', '_')
download_dir.mkdir(parents=True, exist_ok=True)
kaggle.api.dataset_download_files(dataset_ref, path=download_dir, unzip=True)
for file_path in download_dir.glob('*'):
if file_path.is_file() and file_path.suffix.lower() in ['.json', '.csv', '.txt']:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
file_content = f.read()[:5000]
is_relevant, signatures, security_tags, _ = ia_enricher.analyze_content_relevance(file_content)
if is_relevant:
save_qa_pair(
question=f"Quelles informations de sécurité contient le fichier {file_path.name} du dataset '{dataset.title}'?",
answer=file_content, category="security", subcategory="vulnerability",
source=f"kaggle_{dataset_ref}", attack_signatures=signatures, tags=security_tags
)
except Exception as e:
logger.error(f"Erreur lors du traitement du fichier {file_path}: {str(e)}")
time.sleep(random.uniform(2, 4))
except Exception as e:
logger.error(f"Erreur lors de la collecte des données Kaggle pour {query}: {str(e)}")
logger.info("Collecte des données Kaggle terminée.")
def collect_github_data(queries):
logger.info("Début de la collecte des données GitHub...")
base_url = "https://api.github.com"
headers = {"Accept": "application/vnd.github.v3+json"}
if config.USE_API_KEYS:
token = os.getenv('GITHUB_API_TOKEN')
headers["Authorization"] = f"token {token}"
search_queries = queries.split('\n') if queries else ["topic:devsecops", "topic:security"]
for query in search_queries:
logger.info(f"Recherche de repositories pour: {query}")
search_url = f"{base_url}/search/repositories"
params = {"q": query, "sort": "stars", "per_page": 10}
response = make_request(search_url, headers=headers, params=params)
if not response:
continue
data = response.json()
for repo in data.get("items", []):
repo_name = repo["full_name"].replace("/", "_")
logger.info(f"Traitement du repository: {repo['full_name']}")
issues_url = f"{base_url}/repos/{repo['full_name']}/issues"
issues_params = {"state": "closed", "labels": "security,bug,vulnerability", "per_page": 10}
issues_response = make_request(issues_url, headers=headers, params=issues_params)
if issues_response:
issues_data = issues_response.json()
for issue in issues_data:
if "pull_request" in issue: continue
question = issue.get("title", "")
body = clean_html(issue.get("body", ""))
if not question or not body or len(body) < 50: continue
comments_url = issue.get("comments_url")
comments_response = make_request(comments_url, headers=headers)
answer_parts = []
if comments_response:
comments_data = comments_response.json()
for comment in comments_data:
comment_body = clean_html(comment.get("body", ""))
if comment_body: answer_parts.append(comment_body)
if answer_parts:
answer = "\n\n".join(answer_parts)
save_qa_pair(
question=f"{question}: {body}", answer=answer, category="devsecops",
subcategory="github", source=f"github_{repo_name}"
)
time.sleep(random.uniform(1, 3))
logger.info("Collecte des données GitHub terminée.")
def collect_huggingface_data(queries):
logger.info("Début de la collecte des données Hugging Face...")
base_url = "https://huggingface.co/api"
headers = {"Accept": "application/json"}
if config.USE_API_KEYS:
token = os.getenv('HUGGINGFACE_API_TOKEN')
headers["Authorization"] = f"Bearer {token}"
search_queries = queries.split('\n') if queries else ["security", "devsecops"]
for query in search_queries:
logger.info(f"Recherche de datasets pour: {query}")
search_url = f"{base_url}/datasets"
params = {"search": query, "limit": 10}
response = make_request(search_url, headers=headers, params=params)
if not response: continue
data = response.json()
for dataset in data:
dataset_id = dataset["id"].replace("/", "_")
logger.info(f"Traitement du dataset: {dataset['id']}")
dataset_url = f"{base_url}/datasets/{dataset['id']}"
dataset_response = make_request(dataset_url, headers=headers)
if dataset_response:
dataset_data = dataset_response.json()
description = clean_html(dataset_data.get("description", ""))
if not description or len(description) < 100: continue
tags = dataset_data.get("tags", [])
tags_text = ", ".join(tags) if tags else "No tags"
answer = f"Dataset: {dataset_data.get('id', '')}\nDownloads: {dataset_data.get('downloads', 0)}\nTags: {tags_text}\n\n{description}"
save_qa_pair(
question=f"What is the {dataset_data.get('id', '')} dataset about?", answer=answer,
category="security", subcategory="dataset", source=f"huggingface_{dataset_id}", tags=tags
)
time.sleep(random.uniform(1, 3))
logger.info("Collecte des données Hugging Face terminée.")
def collect_nvd_data():
logger.info("Début de la collecte des données NVD...")
base_url = "https://services.nvd.nist.gov/rest/json/cves/2.0"
headers = {"Accept": "application/json"}
if config.USE_API_KEYS:
key = os.getenv('NVD_API_KEY')
headers["apiKey"] = key
params = {"resultsPerPage": 50}
response = make_request(base_url, headers=headers, params=params)
if not response:
logger.warning("Impossible de récupérer les données du NVD.")
return
data = response.json()
vulnerabilities = data.get("vulnerabilities", [])
logger.info(f"Traitement de {len(vulnerabilities)} vulnérabilités...")
for vuln in vulnerabilities:
cve_data = vuln.get("cve", {})
cve_id = cve_data.get("id", "")
descriptions = cve_data.get("descriptions", [])
description = next((desc.get("value", "") for desc in descriptions if desc.get("lang") == "en"), "")
if not description or len(description) < 50: continue
cvss_v3 = cve_data.get("metrics", {}).get("cvssMetricV31", [{}])[0].get("cvssData", {})
severity = cvss_v3.get("baseSeverity", "UNKNOWN")
score = cvss_v3.get("baseScore", 0)
references = [ref.get("url", "") for ref in cve_data.get("references", [])]
answer = f"CVE ID: {cve_id}\nSeverity: {severity}\nCVSS Score: {score}\nReferences: {', '.join(references[:5])}\n\nDescription: {description}"
save_qa_pair(
question=f"What is the vulnerability {cve_id}?", answer=answer,
category="security", subcategory="vulnerability", source=f"nvd_{cve_id}"
)
logger.info("Collecte des données NVD terminée.")
def collect_stack_exchange_data(queries):
logger.info("Début de la collecte des données Stack Exchange...")
base_url = "https://api.stackexchange.com/2.3"
params_base = {"pagesize": 10, "order": "desc", "sort": "votes", "filter": "withbody"}
if config.USE_API_KEYS:
key = os.getenv('STACK_EXCHANGE_API_KEY')
params_base["key"] = key
sites = [
{"site": "security", "category": "security", "subcategory": "security"},
{"site": "devops", "category": "devsecops", "subcategory": "devops"}
]
tags_by_site = {
"security": ["security", "vulnerability"],
"devops": ["devops", "ci-cd"]
}
for site_config in sites:
site = site_config["site"]
category = site_config["category"]
subcategory = site_config["subcategory"]
logger.info(f"Collecte des données du site: {site}")
tags = tags_by_site.get(site, []) + (queries.split('\n') if queries else [])
for tag in list(set(tags)):
logger.info(f"Recherche de questions avec le tag: {tag}")
questions_url = f"{base_url}/questions"
params = {**params_base, "site": site, "tagged": tag}
response = make_request(questions_url, params=params)
if not response: continue
questions_data = response.json()
for question in questions_data.get("items", []):
question_id = question.get("question_id")
title = question.get("title", "")
body = clean_html(question.get("body", ""))
if not body or len(body) < 50: continue
answers_url = f"{base_url}/questions/{question_id}/answers"
answers_params = {**params_base, "site": site}
answers_response = make_request(answers_url, params=answers_params)
answer_body = ""
if answers_response and answers_response.json().get("items"):
answer_body = clean_html(answers_response.json()["items"][0].get("body", ""))
if answer_body:
save_qa_pair(
question=title, answer=answer_body, category=category,
subcategory=subcategory, source=f"{site}_{question_id}", tags=question.get("tags", [])
)
time.sleep(random.uniform(1, 3))
logger.info("Collecte des données Stack Exchange terminée.")
def run_data_collection(sources, queries):
st.session_state.bot_status = "En cours d'exécution"
st.session_state.logs = []
check_api_keys()
progress_bar = st.progress(0)
status_text = st.empty()
enabled_sources = [s for s, enabled in sources.items() if enabled]
total_sources = len(enabled_sources)
completed_sources = 0
for source_name in enabled_sources:
status_text.text(f"Collecte des données de {source_name}...")
try:
if source_name == "Kaggle":
collect_kaggle_data(queries.get("Kaggle", ""))
elif source_name == "GitHub":
collect_github_data(queries.get("GitHub", ""))
elif source_name == "Hugging Face":
collect_huggingface_data(queries.get("Hugging Face", ""))
elif source_name == "NVD":
collect_nvd_data()
elif source_name == "Stack Exchange":
collect_stack_exchange_data(queries.get("Stack Exchange", ""))
except Exception as e:
logger.error(f"Erreur fatale lors de la collecte de {source_name}: {str(e)}")
completed_sources += 1
progress_bar.progress(completed_sources / total_sources)
st.session_state.bot_status = "Terminé"
status_text.text(f"Collecte terminée. Total de paires Q/R sauvegardées: {st.session_state.total_qa_pairs}")
def create_visualizations():
if not st.session_state.qa_data:
st.info("Aucune donnée à visualiser. Lancez d'abord la collecte de données.")
return
df = pd.DataFrame(st.session_state.qa_data)
st.subheader("Répartition des données par catégorie")
category_counts = df['category'].value_counts()
fig1 = px.pie(values=category_counts.values, names=category_counts.index, title="Répartition par catégorie")
st.plotly_chart(fig1, use_container_width=True)
st.subheader("Répartition des données par sous-catégorie")
subcategory_counts = df['subcategory'].value_counts().head(10)
fig2 = px.bar(x=subcategory_counts.values, y=subcategory_counts.index, orientation='h',
title="Top 10 des sous-catégories", labels={'x': 'Nombre de paires Q/R', 'y': 'Sous-catégorie'})
st.plotly_chart(fig2, use_container_width=True)
st.subheader("Répartition des données par source")
source_counts = df['source'].value_counts().head(10)
fig3 = px.bar(x=source_counts.values, y=source_counts.index, orientation='h',
title="Top 10 des sources", labels={'x': 'Nombre de paires Q/R', 'y': 'Source'})
st.plotly_chart(fig3, use_container_width=True)
st.subheader("Tags les plus fréquents")
all_tags = [tag for tags_list in df['tags'] for tag in tags_list]
if all_tags:
tag_counts = pd.Series(all_tags).value_counts().head(15)
fig5 = px.bar(x=tag_counts.values, y=tag_counts.index, orientation='h',
title="Top 15 des tags", labels={'x': 'Fréquence', 'y': 'Tag'})
st.plotly_chart(fig5, use_container_width=True)
st.subheader("Signatures d'attaques les plus fréquentes")
all_signatures = [sig for sigs_list in df['attack_signatures'] for sig in sigs_list]
if all_signatures:
signature_counts = pd.Series(all_signatures).value_counts().head(15)
fig6 = px.bar(x=signature_counts.values, y=signature_counts.index, orientation='h',
title="Top 15 des signatures d'attaques", labels={'x': 'Fréquence', 'y': 'Signature'})
st.plotly_chart(fig6, use_container_width=True)
def main():
create_initial_setup()
st.title("🤖 DevSecOps Data Bot")
st.markdown("---")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Statut du bot", st.session_state.bot_status)
with col2:
check_server_status() # Met à jour le statut
st.metric("Statut du serveur llama.cpp", st.session_state.server_status)
with col3:
st.metric("Paires Q/R collectées", st.session_state.total_qa_pairs)
st.markdown("---")
tab1, tab2, tab3, tab4 = st.tabs(["Réglages", "Collecte", "Traitement IA", "Résultats"])
with tab1:
st.header("Réglages")
subtab1, subtab2, subtab3 = st.tabs(["Clés d'API", "Serveur llama.cpp", "Performance"])
with subtab1:
st.subheader("Clés d'API")
github_token = st.text_input("GitHub API Token", value=os.getenv('GITHUB_API_TOKEN', ''), type="password")
huggingface_token = st.text_input("Hugging Face API Token", value=os.getenv('HUGGINGFACE_API_TOKEN', ''), type="password")
nvd_api_key = st.text_input("NVD API Key", value=os.getenv('NVD_API_KEY', ''), type="password")
stack_exchange_key = st.text_input("Stack Exchange API Key", value=os.getenv('STACK_EXCHANGE_API_KEY', ''), type="password")
if st.button("Sauvegarder les clés d'API"):
with open(config.env_path, 'w') as f:
f.write(f"GITHUB_API_TOKEN={github_token}\n")
f.write(f"HUGGINGFACE_API_TOKEN={huggingface_token}\n")
f.write(f"NVD_API_KEY={nvd_api_key}\n")
f.write(f"STACK_EXCHANGE_API_KEY={stack_exchange_key}\n")
f.write(f"LLM_SERVER_URL={os.getenv('LLM_SERVER_URL', 'http://localhost:8080/completion')}\n")
config.load_dotenv(dotenv_path=config.env_path)
check_api_keys()
st.success("Clés d'API sauvegardées!")
with subtab2:
st.subheader("Serveur llama.cpp")
col1, col2 = st.columns(2)
with col1:
if st.button("Démarrer le serveur"):
start_llm_server()
with col2:
if st.button("Arrêter le serveur"):
stop_llm_server()
st.markdown(f"**Statut actuel:** `{st.session_state.server_status}`")
llm_url = st.text_input("URL du serveur LLM", value=config.LLM_SERVER_URL)
if st.button("Mettre à jour l'URL"):
config.LLM_SERVER_URL = llm_url
os.environ['LLM_SERVER_URL'] = llm_url
st.success("URL mise à jour!")
with subtab3:
st.subheader("Paramètres de performance")
max_requests = st.number_input("Nombre de requêtes avant pause", value=config.MAX_REQUESTS_BEFORE_PAUSE)
min_pause = st.number_input("Pause minimum (secondes)", value=config.MIN_PAUSE)
max_pause = st.number_input("Pause maximum (secondes)", value=config.MAX_PAUSE)
if st.button("Sauvegarder les paramètres"):
config.MAX_REQUESTS_BEFORE_PAUSE = max_requests
config.MIN_PAUSE = min_pause
config.MAX_PAUSE = max_pause
st.success("Paramètres sauvegardés!")
with tab2:
st.header("Collecte de données")
sources = {
"Kaggle": st.checkbox("Kaggle", value=True),
"GitHub": st.checkbox("GitHub", value=True),
"Hugging Face": st.checkbox("Hugging Face", value=True),
"NVD": st.checkbox("NVD", value=True),
"Stack Exchange": st.checkbox("Stack Exchange", value=True)
}
st.subheader("Requêtes de recherche")
queries = {
"Kaggle": st.text_area("Requêtes Kaggle (une par ligne)", value="cybersecurity\nvulnerability"),
"GitHub": st.text_area("Requêtes GitHub (une par ligne)", value="topic:devsecops\ntopic:security"),
"Hugging Face": st.text_area("Requêtes Hugging Face (une par ligne)", value="security\ndevsecops"),
"Stack Exchange": st.text_area("Requêtes Stack Exchange (une par ligne)", value="security\nvulnerability")
}
if st.button("Lancer la collecte"):
run_data_collection(sources, queries)
with tab3:
st.header("Traitement IA")
enable_enrichment = st.checkbox("Activer l'enrichissement IA", value=st.session_state.enable_enrichment)
st.session_state.enable_enrichment = enable_enrichment
if enable_enrichment:
st.session_state.min_relevance = st.slider("Score de pertinence minimum", 0, 100, st.session_state.min_relevance)
st.session_state.num_queries = st.number_input("Nombre de nouvelles requêtes", value=st.session_state.num_queries)
st.subheader("Paramètres du LLM")
st.session_state.temperature = st.slider("Température", 0.0, 1.0, 0.7)
st.session_state.n_predict = st.number_input("Nombre de tokens de prédiction", value=512)
prompts = load_prompts()
st.subheader("Prompts")
for task, task_data in prompts.items():
st.write(f"**{task}**")
st.text_area(f"System Prompt - {task}", value=task_data.get("system", ""), height=100, key=f"system_{task}")
st.text_area(f"Prompt Template - {task}", value=task_data.get("prompt_template", ""), height=150, key=f"template_{task}")
if st.button("Sauvegarder les prompts"):
updated_prompts = {
task: {
"system": st.session_state[f"system_{task}"],
"prompt_template": st.session_state[f"template_{task}"]
} for task in prompts
}
with open("config/prompts.json", 'w') as f:
json.dump(updated_prompts, f, indent=2)
global PROMPTS
PROMPTS = load_prompts()
st.success("Prompts sauvegardés!")
with tab4:
st.header("Résultats")
subtab1, subtab2, subtab3 = st.tabs(["Visualisations", "Données", "Logs"])
with subtab1:
create_visualizations()
with subtab2:
st.subheader("Aperçu des données")
if st.session_state.qa_data:
df = pd.DataFrame(st.session_state.qa_data)
st.dataframe(df.tail(10))
st.subheader("Téléchargement des données")
col1, col2 = st.columns(2)
with col1:
json_data = json.dumps(st.session_state.qa_data, indent=2)
st.download_button(label="Télécharger JSON", data=json_data, file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json", mime="application/json")
with col2:
csv_data = df.to_csv(index=False)
st.download_button(label="Télécharger CSV", data=csv_data, file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv", mime="text/csv")
else:
st.info("Aucune donnée à afficher. Lancez d'abord la collecte.")
with subtab3:
st.subheader("Logs d'exécution")
for log in st.session_state.logs:
st.text(log)
if __name__ == "__main__":
main()
|