Commit
·
62a0596
0
Parent(s):
Initial commit for the DevSecOps bot
Browse files- .app.py.swp +0 -0
- .gitignore +19 -0
- app.py +824 -0
- app_old.py +901 -0
- build.sh +88 -0
- build_old.sh +64 -0
- config/__pycache__/app_config.cpython-312.pyc +0 -0
- config/app_config.py +51 -0
- config/prompts.json +14 -0
- llama.cpp +1 -0
- monitor.sh +55 -0
- requirements.txt +56 -0
- run.sh +132 -0
- scripts/download_with_aria2c.sh +9 -0
- server/server.pid +1 -0
- server/start_server.sh +15 -0
- server/stop_server.sh +10 -0
.app.py.swp
ADDED
|
Binary file (1.02 kB). View file
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ignorer le dossier de l'environnement virtuel Python
|
| 2 |
+
venv/
|
| 3 |
+
|
| 4 |
+
# Ignorer les fichiers de l'environnement virtuel Python créés par Poetry
|
| 5 |
+
.venv/
|
| 6 |
+
|
| 7 |
+
# Ignorer les fichiers des secrets de l'environnement
|
| 8 |
+
.env
|
| 9 |
+
|
| 10 |
+
# Ignorer le dossier build de llama.cpp car il est recréé par le script
|
| 11 |
+
llama.cpp/build/
|
| 12 |
+
|
| 13 |
+
# Ignorer les logs générés
|
| 14 |
+
logs/
|
| 15 |
+
|
| 16 |
+
# Ignorer le modèle GGUF qui est téléchargé au démarrage
|
| 17 |
+
models/*.gguf
|
| 18 |
+
|
| 19 |
+
# Si d'autres fichiers doivent être exclus, ajoutez-les ici
|
app.py
ADDED
|
@@ -0,0 +1,824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import time
|
| 5 |
+
import random
|
| 6 |
+
import logging
|
| 7 |
+
import requests
|
| 8 |
+
import json
|
| 9 |
+
import re
|
| 10 |
+
import subprocess
|
| 11 |
+
import shutil
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
# Importation et chargement des variables d'environnement depuis le fichier .env
|
| 16 |
+
from dotenv import load_dotenv
|
| 17 |
+
load_dotenv()
|
| 18 |
+
|
| 19 |
+
import streamlit as st
|
| 20 |
+
import pandas as pd
|
| 21 |
+
import plotly.express as px
|
| 22 |
+
import plotly.graph_objects as go
|
| 23 |
+
from bs4 import BeautifulSoup
|
| 24 |
+
import html2text
|
| 25 |
+
import kaggle
|
| 26 |
+
|
| 27 |
+
# Importation du module de configuration
|
| 28 |
+
from config import app_config as config
|
| 29 |
+
|
| 30 |
+
# Configuration de la page Streamlit
|
| 31 |
+
st.set_page_config(
|
| 32 |
+
page_title="DevSecOps Data Bot",
|
| 33 |
+
layout="wide",
|
| 34 |
+
initial_sidebar_state="expanded"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Initialisation des variables de session
|
| 38 |
+
config.init_session_state()
|
| 39 |
+
|
| 40 |
+
# Configuration du logging
|
| 41 |
+
def setup_logging():
|
| 42 |
+
log_dir = Path("logs")
|
| 43 |
+
log_dir.mkdir(exist_ok=True)
|
| 44 |
+
log_file = log_dir / f"data_collector_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
|
| 45 |
+
logging.basicConfig(
|
| 46 |
+
level=logging.INFO,
|
| 47 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 48 |
+
handlers=[
|
| 49 |
+
logging.FileHandler(log_file),
|
| 50 |
+
logging.StreamHandler(sys.stdout)
|
| 51 |
+
]
|
| 52 |
+
)
|
| 53 |
+
return logging.getLogger(__name__)
|
| 54 |
+
|
| 55 |
+
logger = setup_logging()
|
| 56 |
+
|
| 57 |
+
# Création des répertoires et scripts nécessaires
|
| 58 |
+
def create_initial_setup():
|
| 59 |
+
dirs = [
|
| 60 |
+
"data/devsecops/qa", "data/security/qa", "data/development/qa",
|
| 61 |
+
"data/data_analysis/qa", "logs", "config", "server", "scripts",
|
| 62 |
+
"models", "llama.cpp", ".kaggle"
|
| 63 |
+
]
|
| 64 |
+
for dir_path in dirs:
|
| 65 |
+
Path(dir_path).mkdir(parents=True, exist_ok=True)
|
| 66 |
+
|
| 67 |
+
download_script = Path("scripts/download_with_aria2c.sh")
|
| 68 |
+
if not download_script.exists():
|
| 69 |
+
with open(download_script, 'w') as f:
|
| 70 |
+
f.write("""#!/bin/bash
|
| 71 |
+
URL=$1
|
| 72 |
+
OUTPUT=$2
|
| 73 |
+
MAX_RETRIES=5
|
| 74 |
+
for i in $(seq 1 $MAX_RETRIES); do
|
| 75 |
+
echo "Tentative $i/$MAX_RETRIES: $URL"
|
| 76 |
+
aria2c -x 16 -s 16 -d "$(dirname "$OUTPUT")" -o "$(basename "$OUTPUT")" "$URL" && break
|
| 77 |
+
sleep 10
|
| 78 |
+
done
|
| 79 |
+
""")
|
| 80 |
+
os.chmod(download_script, 0o755)
|
| 81 |
+
|
| 82 |
+
llama_dir = Path("llama.cpp")
|
| 83 |
+
if not llama_dir.exists():
|
| 84 |
+
st.info("Installation de llama.cpp...")
|
| 85 |
+
subprocess.run(["git", "clone", "https://github.com/ggerganov/llama.cpp.git", str(llama_dir)])
|
| 86 |
+
os.chdir(str(llama_dir))
|
| 87 |
+
subprocess.run(["mkdir", "-p", "build"])
|
| 88 |
+
os.chdir("build")
|
| 89 |
+
subprocess.run(["cmake", "..", "-DLLAMA_CURL=1"])
|
| 90 |
+
subprocess.run(["cmake", "--build", ".", "--config", "Release"])
|
| 91 |
+
os.chdir(Path(__file__).parent)
|
| 92 |
+
|
| 93 |
+
# Convertisseur HTML vers texte
|
| 94 |
+
h = html2text.HTML2Text()
|
| 95 |
+
h.ignore_links = False
|
| 96 |
+
h.ignore_images = True
|
| 97 |
+
h.ignore_emphasis = False
|
| 98 |
+
h.body_width = 0
|
| 99 |
+
|
| 100 |
+
# Fonctions pour le serveur LLM (llama.cpp)
|
| 101 |
+
def check_server_status():
|
| 102 |
+
try:
|
| 103 |
+
response = requests.get(config.LLM_SERVER_URL.replace("/completion", "/health"), timeout=2)
|
| 104 |
+
if response.status_code == 200:
|
| 105 |
+
st.session_state.server_status = "Actif"
|
| 106 |
+
return True
|
| 107 |
+
else:
|
| 108 |
+
st.session_state.server_status = "Inactif"
|
| 109 |
+
return False
|
| 110 |
+
except requests.exceptions.RequestException:
|
| 111 |
+
st.session_state.server_status = "Inactif"
|
| 112 |
+
return False
|
| 113 |
+
|
| 114 |
+
def start_llm_server():
|
| 115 |
+
if check_server_status():
|
| 116 |
+
st.info("Le serveur llama.cpp est déjà en cours d'exécution.")
|
| 117 |
+
return
|
| 118 |
+
|
| 119 |
+
model_path = Path("models/qwen2.5-coder-1.5b-q8_0.gguf")
|
| 120 |
+
if not model_path.exists():
|
| 121 |
+
st.error("Le modèle GGUF n'existe pas. Veuillez le placer dans le dossier models/.")
|
| 122 |
+
return
|
| 123 |
+
|
| 124 |
+
llama_server = Path("llama.cpp/build/bin/llama-server")
|
| 125 |
+
if not llama_server.exists():
|
| 126 |
+
st.error("llama.cpp n'est pas compilé. Veuillez compiler llama.cpp d'abord.")
|
| 127 |
+
return
|
| 128 |
+
|
| 129 |
+
start_script = Path("server/start_server.sh")
|
| 130 |
+
if not start_script.exists():
|
| 131 |
+
with open(start_script, 'w') as f:
|
| 132 |
+
f.write(f"""#!/bin/bash
|
| 133 |
+
MODEL_PATH="{str(model_path)}"
|
| 134 |
+
if [ ! -f "$MODEL_PATH" ]; then
|
| 135 |
+
echo "Le modèle GGUF est introuvable à: $MODEL_PATH"
|
| 136 |
+
exit 1
|
| 137 |
+
fi
|
| 138 |
+
"{str(llama_server)}" \\
|
| 139 |
+
-m "$MODEL_PATH" \\
|
| 140 |
+
--port 8080 \\
|
| 141 |
+
--host 0.0.0.0 \\
|
| 142 |
+
-c 4096 \\
|
| 143 |
+
-ngl 999 \\
|
| 144 |
+
--threads 8 \\
|
| 145 |
+
> "logs/llama_server.log" 2>&1 &
|
| 146 |
+
echo $! > "server/server.pid"
|
| 147 |
+
""")
|
| 148 |
+
os.chmod(start_script, 0o755)
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
subprocess.Popen(["bash", str(start_script)])
|
| 152 |
+
st.success("Le serveur llama.cpp est en cours de démarrage...")
|
| 153 |
+
time.sleep(5)
|
| 154 |
+
if check_server_status():
|
| 155 |
+
st.success("Serveur llama.cpp démarré avec succès!")
|
| 156 |
+
else:
|
| 157 |
+
st.error("Le serveur n'a pas pu démarrer. Vérifiez les logs dans le dossier logs/.")
|
| 158 |
+
except Exception as e:
|
| 159 |
+
st.error(f"Erreur lors du démarrage du serveur: {str(e)}")
|
| 160 |
+
|
| 161 |
+
def stop_llm_server():
|
| 162 |
+
stop_script = Path("server/stop_server.sh")
|
| 163 |
+
if not stop_script.exists():
|
| 164 |
+
with open(stop_script, 'w') as f:
|
| 165 |
+
f.write("""#!/bin/bash
|
| 166 |
+
PID_FILE="server/server.pid"
|
| 167 |
+
if [ -f "$PID_FILE" ]; then
|
| 168 |
+
PID=$(cat "$PID_FILE")
|
| 169 |
+
kill $PID
|
| 170 |
+
rm "$PID_FILE"
|
| 171 |
+
echo "Serveur llama.cpp arrêté."
|
| 172 |
+
else
|
| 173 |
+
echo "Aucun PID de serveur trouvé."
|
| 174 |
+
fi
|
| 175 |
+
""")
|
| 176 |
+
os.chmod(stop_script, 0o755)
|
| 177 |
+
|
| 178 |
+
try:
|
| 179 |
+
subprocess.run(["bash", str(stop_script)])
|
| 180 |
+
st.success("Le serveur llama.cpp est en cours d'arrêt...")
|
| 181 |
+
time.sleep(2)
|
| 182 |
+
if not check_server_status():
|
| 183 |
+
st.success("Serveur llama.cpp arrêté avec succès!")
|
| 184 |
+
else:
|
| 185 |
+
st.warning("Le serveur n'a pas pu être arrêté correctement.")
|
| 186 |
+
except Exception as e:
|
| 187 |
+
st.error(f"Erreur lors de l'arrêt du serveur: {str(e)}")
|
| 188 |
+
|
| 189 |
+
def load_prompts():
|
| 190 |
+
prompts_file = Path("config/prompts.json")
|
| 191 |
+
if not prompts_file.exists():
|
| 192 |
+
default_prompts = {
|
| 193 |
+
"enrich_qa": {
|
| 194 |
+
"system": "Tu es un expert DevSecOps. Améliore cette paire question/réponse en y ajoutant des tags, des signatures d'attaques potentielles, et en structurant les informations. Réponds uniquement avec un objet JSON.",
|
| 195 |
+
"prompt_template": "Question originale: {question}\nRéponse originale: {answer}\nContexte: {context}\n\nFournis une version améliorée sous forme de JSON:\n{{\n \"question\": \"question améliorée\",\n \"answer\": \"réponse améliorée\",\n \"tags\": [\"tag1\", \"tag2\"],\n \"attack_signatures\": [\"signature1\", \"signature2\"]\n}}"
|
| 196 |
+
},
|
| 197 |
+
"analyze_relevance": {
|
| 198 |
+
"system": "Analyse ce contenu et détermine s'il est pertinent pour DevSecOps. Si pertinent, extrais les signatures d'attaques connues. Réponds uniquement avec un objet JSON.",
|
| 199 |
+
"prompt_template": "Contenu: {content}...\n\nRéponds sous forme de JSON:\n{{\n \"relevant\": true,\n \"attack_signatures\": [\"signature1\", \"signature2\"],\n \"security_tags\": [\"tag1\", \"tag2\"],\n \"it_relevance_score\": 0-100\n}}"
|
| 200 |
+
},
|
| 201 |
+
"generate_queries": {
|
| 202 |
+
"system": "Analyse les données actuelles et génère 5 nouvelles requêtes de recherche pour trouver plus de contenu DevSecOps pertinent, en particulier des signatures d'attaques et vulnérabilités. Réponds uniquement avec un objet JSON.",
|
| 203 |
+
"prompt_template": "Données actuelles: {current_data}...\n\nRéponds sous forme de JSON:\n{{\n \"queries\": [\"query1\", \"query2\", \"query3\", \"query4\", \"query5\"]\n}}"
|
| 204 |
+
}
|
| 205 |
+
}
|
| 206 |
+
with open(prompts_file, 'w') as f:
|
| 207 |
+
json.dump(default_prompts, f, indent=2)
|
| 208 |
+
|
| 209 |
+
with open(prompts_file, 'r', encoding='utf-8') as f:
|
| 210 |
+
return json.load(f)
|
| 211 |
+
|
| 212 |
+
PROMPTS = load_prompts()
|
| 213 |
+
|
| 214 |
+
class IAEnricher:
|
| 215 |
+
def __init__(self):
|
| 216 |
+
self.server_url = config.LLM_SERVER_URL
|
| 217 |
+
self.available = check_server_status()
|
| 218 |
+
if self.available:
|
| 219 |
+
logger.info("Serveur llama.cpp détecté et prêt.")
|
| 220 |
+
else:
|
| 221 |
+
logger.warning("Serveur llama.cpp non disponible. Les fonctionnalités d'IA seront désactivées.")
|
| 222 |
+
|
| 223 |
+
def _get_qwen_response(self, prompt, **kwargs):
|
| 224 |
+
if not self.available:
|
| 225 |
+
return None
|
| 226 |
+
|
| 227 |
+
payload = {
|
| 228 |
+
"prompt": prompt,
|
| 229 |
+
"n_predict": kwargs.get('n_predict', 512),
|
| 230 |
+
"temperature": kwargs.get('temperature', 0.7),
|
| 231 |
+
"stop": ["<|im_end|>", "</s>"]
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
try:
|
| 235 |
+
response = requests.post(self.server_url, json=payload, timeout=60)
|
| 236 |
+
if response.status_code == 200:
|
| 237 |
+
return response.json().get('content', '')
|
| 238 |
+
else:
|
| 239 |
+
logger.error(f"Erreur du serveur LLM: {response.status_code} - {response.text}")
|
| 240 |
+
return None
|
| 241 |
+
except requests.exceptions.RequestException as e:
|
| 242 |
+
logger.error(f"Erreur de connexion au serveur LLM: {str(e)}")
|
| 243 |
+
return None
|
| 244 |
+
|
| 245 |
+
def enrich_qa_pair(self, question, answer, context=""):
|
| 246 |
+
if not self.available or not st.session_state.enable_enrichment:
|
| 247 |
+
return question, answer, [], []
|
| 248 |
+
|
| 249 |
+
prompt_template = PROMPTS.get("enrich_qa", {}).get("prompt_template", "")
|
| 250 |
+
system_prompt = PROMPTS.get("enrich_qa", {}).get("system", "")
|
| 251 |
+
|
| 252 |
+
full_prompt = f"{system_prompt}\n\n{prompt_template.format(question=question, answer=answer, context=context[:500])}"
|
| 253 |
+
response_text = self._get_qwen_response(full_prompt, n_predict=1024)
|
| 254 |
+
|
| 255 |
+
if response_text:
|
| 256 |
+
try:
|
| 257 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 258 |
+
if json_match:
|
| 259 |
+
enriched_data = json.loads(json_match.group())
|
| 260 |
+
return (
|
| 261 |
+
enriched_data.get('question', question),
|
| 262 |
+
enriched_data.get('answer', answer),
|
| 263 |
+
enriched_data.get('tags', []),
|
| 264 |
+
enriched_data.get('attack_signatures', [])
|
| 265 |
+
)
|
| 266 |
+
except json.JSONDecodeError as e:
|
| 267 |
+
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 268 |
+
|
| 269 |
+
return question, answer, [], []
|
| 270 |
+
|
| 271 |
+
def analyze_content_relevance(self, content):
|
| 272 |
+
if not self.available or not st.session_state.enable_enrichment:
|
| 273 |
+
return True, [], [], 50
|
| 274 |
+
|
| 275 |
+
prompt_template = PROMPTS.get("analyze_relevance", {}).get("prompt_template", "")
|
| 276 |
+
system_prompt = PROMPTS.get("analyze_relevance", {}).get("system", "")
|
| 277 |
+
|
| 278 |
+
full_prompt = f"{system_prompt}\n\n{prompt_template.format(content=content[:1500])}"
|
| 279 |
+
response_text = self._get_qwen_response(full_prompt, n_predict=256, temperature=st.session_state.temperature)
|
| 280 |
+
|
| 281 |
+
if response_text:
|
| 282 |
+
try:
|
| 283 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 284 |
+
if json_match:
|
| 285 |
+
analysis = json.loads(json_match.group())
|
| 286 |
+
return (
|
| 287 |
+
analysis.get('relevant', True),
|
| 288 |
+
analysis.get('attack_signatures', []),
|
| 289 |
+
analysis.get('security_tags', []),
|
| 290 |
+
analysis.get('it_relevance_score', 50)
|
| 291 |
+
)
|
| 292 |
+
except json.JSONDecodeError as e:
|
| 293 |
+
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 294 |
+
return True, [], [], 50
|
| 295 |
+
|
| 296 |
+
def generate_adaptive_queries(self, current_data):
|
| 297 |
+
if not self.available or not st.session_state.enable_enrichment:
|
| 298 |
+
return []
|
| 299 |
+
|
| 300 |
+
prompt_template = PROMPTS.get("generate_queries", {}).get("prompt_template", "")
|
| 301 |
+
system_prompt = PROMPTS.get("generate_queries", {}).get("system", "")
|
| 302 |
+
|
| 303 |
+
full_prompt = f"{system_prompt}\n\n{prompt_template.format(current_data=current_data[:1000])}"
|
| 304 |
+
response_text = self._get_qwen_response(full_prompt, n_predict=st.session_state.n_predict)
|
| 305 |
+
|
| 306 |
+
if response_text:
|
| 307 |
+
try:
|
| 308 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 309 |
+
if json_match:
|
| 310 |
+
queries_data = json.loads(json_match.group())
|
| 311 |
+
return queries_data.get('queries', [])
|
| 312 |
+
except json.JSONDecodeError as e:
|
| 313 |
+
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 314 |
+
return []
|
| 315 |
+
|
| 316 |
+
ia_enricher = IAEnricher()
|
| 317 |
+
|
| 318 |
+
def check_api_keys():
|
| 319 |
+
keys = {
|
| 320 |
+
'GITHUB_API_TOKEN': os.getenv('GITHUB_API_TOKEN'),
|
| 321 |
+
'HUGGINGFACE_API_TOKEN': os.getenv('HUGGINGFACE_API_TOKEN'),
|
| 322 |
+
'NVD_API_KEY': os.getenv('NVD_API_KEY'),
|
| 323 |
+
'STACK_EXCHANGE_API_KEY': os.getenv('STACK_EXCHANGE_API_KEY')
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
valid_keys = {k: v for k, v in keys.items() if v and v != f'your_{k.lower()}_here'}
|
| 327 |
+
|
| 328 |
+
config.USE_API_KEYS = len(valid_keys) == len(keys)
|
| 329 |
+
if not config.USE_API_KEYS:
|
| 330 |
+
missing = set(keys.keys()) - set(valid_keys.keys())
|
| 331 |
+
logger.warning(f"Clés d'API manquantes ou non configurées: {', '.join(missing)}")
|
| 332 |
+
logger.warning("Le bot fonctionnera en mode dégradé avec des pauses plus longues.")
|
| 333 |
+
else:
|
| 334 |
+
logger.info("Toutes les clés d'API sont configurées.")
|
| 335 |
+
return config.USE_API_KEYS
|
| 336 |
+
|
| 337 |
+
def make_request(url, headers=None, params=None, is_api_call=True):
|
| 338 |
+
config.REQUEST_COUNT += 1
|
| 339 |
+
|
| 340 |
+
pause_factor = 1 if config.USE_API_KEYS else 2
|
| 341 |
+
|
| 342 |
+
if config.REQUEST_COUNT >= config.MAX_REQUESTS_BEFORE_PAUSE:
|
| 343 |
+
pause_time = random.uniform(config.MIN_PAUSE * pause_factor, config.MAX_PAUSE * pause_factor)
|
| 344 |
+
logger.info(f"Pause de {pause_time:.2f} secondes après {config.REQUEST_COUNT} requêtes...")
|
| 345 |
+
time.sleep(pause_time)
|
| 346 |
+
config.REQUEST_COUNT = 0
|
| 347 |
+
|
| 348 |
+
try:
|
| 349 |
+
response = requests.get(url, headers=headers, params=params, timeout=30)
|
| 350 |
+
|
| 351 |
+
if response.status_code == 200:
|
| 352 |
+
return response
|
| 353 |
+
elif response.status_code in [401, 403]:
|
| 354 |
+
logger.warning(f"Accès non autorisé à {url}. Vérifiez vos clés d'API.")
|
| 355 |
+
return None
|
| 356 |
+
elif response.status_code == 429:
|
| 357 |
+
retry_after = int(response.headers.get('Retry-After', 10))
|
| 358 |
+
logger.warning(f"Limite de débit atteinte. Pause de {retry_after} secondes...")
|
| 359 |
+
time.sleep(retry_after)
|
| 360 |
+
return make_request(url, headers, params, is_api_call)
|
| 361 |
+
else:
|
| 362 |
+
logger.warning(f"Statut HTTP {response.status_code} pour {url}")
|
| 363 |
+
return None
|
| 364 |
+
except requests.exceptions.RequestException as e:
|
| 365 |
+
logger.error(f"Erreur lors de la requête à {url}: {str(e)}")
|
| 366 |
+
return None
|
| 367 |
+
|
| 368 |
+
def clean_html(html_content):
|
| 369 |
+
if not html_content:
|
| 370 |
+
return ""
|
| 371 |
+
text = h.handle(html_content)
|
| 372 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 373 |
+
return text
|
| 374 |
+
|
| 375 |
+
def save_qa_pair(question, answer, category, subcategory, source, attack_signatures=None, tags=None):
|
| 376 |
+
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 377 |
+
enriched_question, enriched_answer, enriched_tags, enriched_signatures = ia_enricher.enrich_qa_pair(
|
| 378 |
+
question, answer, f"{category}/{subcategory}"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
question = enriched_question
|
| 382 |
+
answer = enriched_answer
|
| 383 |
+
tags = list(set((tags or []) + enriched_tags))
|
| 384 |
+
attack_signatures = list(set((attack_signatures or []) + enriched_signatures))
|
| 385 |
+
|
| 386 |
+
save_dir = Path("data") / category / "qa"
|
| 387 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
| 388 |
+
|
| 389 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 390 |
+
filename = f"{subcategory}_{source}_{st.session_state.total_qa_pairs}_{timestamp}.json"
|
| 391 |
+
filename = re.sub(r'[^\w\s-]', '', filename).replace(' ', '_')
|
| 392 |
+
|
| 393 |
+
qa_data = {
|
| 394 |
+
"question": question,
|
| 395 |
+
"answer": answer,
|
| 396 |
+
"category": category,
|
| 397 |
+
"subcategory": subcategory,
|
| 398 |
+
"source": source,
|
| 399 |
+
"timestamp": timestamp,
|
| 400 |
+
"attack_signatures": attack_signatures or [],
|
| 401 |
+
"tags": tags or []
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
try:
|
| 405 |
+
with open(save_dir / filename, "w", encoding="utf-8") as f:
|
| 406 |
+
json.dump(qa_data, f, indent=2, ensure_ascii=False)
|
| 407 |
+
|
| 408 |
+
st.session_state.total_qa_pairs += 1
|
| 409 |
+
st.session_state.qa_data.append(qa_data)
|
| 410 |
+
|
| 411 |
+
logger.info(f"Paire Q/R sauvegardée: {filename} (Total: {st.session_state.total_qa_pairs})")
|
| 412 |
+
st.session_state.logs.append(f"Sauvegardé: {filename}")
|
| 413 |
+
except Exception as e:
|
| 414 |
+
logger.error(f"Erreur lors de la sauvegarde du fichier {filename}: {str(e)}")
|
| 415 |
+
|
| 416 |
+
def collect_kaggle_data(queries):
|
| 417 |
+
logger.info("Début de la collecte des données Kaggle...")
|
| 418 |
+
kaggle_dir = Path(".kaggle")
|
| 419 |
+
kaggle_json = kaggle_dir / "kaggle.json"
|
| 420 |
+
if not kaggle_json.exists():
|
| 421 |
+
logger.warning("Fichier kaggle.json non trouvé. Veuillez le placer dans le dossier .kaggle/")
|
| 422 |
+
return
|
| 423 |
+
|
| 424 |
+
os.environ['KAGGLE_CONFIG_DIR'] = str(kaggle_dir.absolute())
|
| 425 |
+
|
| 426 |
+
try:
|
| 427 |
+
kaggle.api.authenticate()
|
| 428 |
+
except Exception as e:
|
| 429 |
+
logger.error(f"Erreur d'authentification Kaggle: {str(e)}")
|
| 430 |
+
return
|
| 431 |
+
|
| 432 |
+
search_queries = queries.split('\n') if queries else ["cybersecurity", "vulnerability"]
|
| 433 |
+
|
| 434 |
+
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 435 |
+
adaptive_queries = ia_enricher.generate_adaptive_queries("Initial data keywords: " + ", ".join(search_queries))
|
| 436 |
+
search_queries.extend(adaptive_queries)
|
| 437 |
+
|
| 438 |
+
for query in list(set(search_queries)):
|
| 439 |
+
logger.info(f"Recherche de datasets Kaggle pour: {query}")
|
| 440 |
+
try:
|
| 441 |
+
datasets = kaggle.api.dataset_list(search=query, max_results=5)
|
| 442 |
+
for dataset in datasets:
|
| 443 |
+
dataset_ref = dataset.ref
|
| 444 |
+
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 445 |
+
is_relevant, _, _, relevance_score = ia_enricher.analyze_content_relevance(dataset.title + " " + dataset.subtitle)
|
| 446 |
+
if not is_relevant or relevance_score < st.session_state.min_relevance:
|
| 447 |
+
logger.info(f"Dataset non pertinent ({relevance_score}%): {dataset_ref}. Ignoré.")
|
| 448 |
+
continue
|
| 449 |
+
|
| 450 |
+
logger.info(f"Traitement du dataset: {dataset_ref}")
|
| 451 |
+
download_dir = Path("data") / "security" / "kaggle" / dataset_ref.replace('/', '_')
|
| 452 |
+
download_dir.mkdir(parents=True, exist_ok=True)
|
| 453 |
+
kaggle.api.dataset_download_files(dataset_ref, path=download_dir, unzip=True)
|
| 454 |
+
|
| 455 |
+
for file_path in download_dir.glob('*'):
|
| 456 |
+
if file_path.is_file() and file_path.suffix.lower() in ['.json', '.csv', '.txt']:
|
| 457 |
+
try:
|
| 458 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 459 |
+
file_content = f.read()[:5000]
|
| 460 |
+
is_relevant, signatures, security_tags, _ = ia_enricher.analyze_content_relevance(file_content)
|
| 461 |
+
if is_relevant:
|
| 462 |
+
save_qa_pair(
|
| 463 |
+
question=f"Quelles informations de sécurité contient le fichier {file_path.name} du dataset '{dataset.title}'?",
|
| 464 |
+
answer=file_content, category="security", subcategory="vulnerability",
|
| 465 |
+
source=f"kaggle_{dataset_ref}", attack_signatures=signatures, tags=security_tags
|
| 466 |
+
)
|
| 467 |
+
except Exception as e:
|
| 468 |
+
logger.error(f"Erreur lors du traitement du fichier {file_path}: {str(e)}")
|
| 469 |
+
time.sleep(random.uniform(2, 4))
|
| 470 |
+
except Exception as e:
|
| 471 |
+
logger.error(f"Erreur lors de la collecte des données Kaggle pour {query}: {str(e)}")
|
| 472 |
+
logger.info("Collecte des données Kaggle terminée.")
|
| 473 |
+
|
| 474 |
+
def collect_github_data(queries):
|
| 475 |
+
logger.info("Début de la collecte des données GitHub...")
|
| 476 |
+
base_url = "https://api.github.com"
|
| 477 |
+
headers = {"Accept": "application/vnd.github.v3+json"}
|
| 478 |
+
if config.USE_API_KEYS:
|
| 479 |
+
token = os.getenv('GITHUB_API_TOKEN')
|
| 480 |
+
headers["Authorization"] = f"token {token}"
|
| 481 |
+
|
| 482 |
+
search_queries = queries.split('\n') if queries else ["topic:devsecops", "topic:security"]
|
| 483 |
+
|
| 484 |
+
for query in search_queries:
|
| 485 |
+
logger.info(f"Recherche de repositories pour: {query}")
|
| 486 |
+
search_url = f"{base_url}/search/repositories"
|
| 487 |
+
params = {"q": query, "sort": "stars", "per_page": 10}
|
| 488 |
+
response = make_request(search_url, headers=headers, params=params)
|
| 489 |
+
if not response:
|
| 490 |
+
continue
|
| 491 |
+
|
| 492 |
+
data = response.json()
|
| 493 |
+
for repo in data.get("items", []):
|
| 494 |
+
repo_name = repo["full_name"].replace("/", "_")
|
| 495 |
+
logger.info(f"Traitement du repository: {repo['full_name']}")
|
| 496 |
+
|
| 497 |
+
issues_url = f"{base_url}/repos/{repo['full_name']}/issues"
|
| 498 |
+
issues_params = {"state": "closed", "labels": "security,bug,vulnerability", "per_page": 10}
|
| 499 |
+
issues_response = make_request(issues_url, headers=headers, params=issues_params)
|
| 500 |
+
|
| 501 |
+
if issues_response:
|
| 502 |
+
issues_data = issues_response.json()
|
| 503 |
+
for issue in issues_data:
|
| 504 |
+
if "pull_request" in issue: continue
|
| 505 |
+
question = issue.get("title", "")
|
| 506 |
+
body = clean_html(issue.get("body", ""))
|
| 507 |
+
if not question or not body or len(body) < 50: continue
|
| 508 |
+
|
| 509 |
+
comments_url = issue.get("comments_url")
|
| 510 |
+
comments_response = make_request(comments_url, headers=headers)
|
| 511 |
+
answer_parts = []
|
| 512 |
+
if comments_response:
|
| 513 |
+
comments_data = comments_response.json()
|
| 514 |
+
for comment in comments_data:
|
| 515 |
+
comment_body = clean_html(comment.get("body", ""))
|
| 516 |
+
if comment_body: answer_parts.append(comment_body)
|
| 517 |
+
|
| 518 |
+
if answer_parts:
|
| 519 |
+
answer = "\n\n".join(answer_parts)
|
| 520 |
+
save_qa_pair(
|
| 521 |
+
question=f"{question}: {body}", answer=answer, category="devsecops",
|
| 522 |
+
subcategory="github", source=f"github_{repo_name}"
|
| 523 |
+
)
|
| 524 |
+
time.sleep(random.uniform(1, 3))
|
| 525 |
+
logger.info("Collecte des données GitHub terminée.")
|
| 526 |
+
|
| 527 |
+
def collect_huggingface_data(queries):
|
| 528 |
+
logger.info("Début de la collecte des données Hugging Face...")
|
| 529 |
+
base_url = "https://huggingface.co/api"
|
| 530 |
+
headers = {"Accept": "application/json"}
|
| 531 |
+
if config.USE_API_KEYS:
|
| 532 |
+
token = os.getenv('HUGGINGFACE_API_TOKEN')
|
| 533 |
+
headers["Authorization"] = f"Bearer {token}"
|
| 534 |
+
|
| 535 |
+
search_queries = queries.split('\n') if queries else ["security", "devsecops"]
|
| 536 |
+
for query in search_queries:
|
| 537 |
+
logger.info(f"Recherche de datasets pour: {query}")
|
| 538 |
+
search_url = f"{base_url}/datasets"
|
| 539 |
+
params = {"search": query, "limit": 10}
|
| 540 |
+
response = make_request(search_url, headers=headers, params=params)
|
| 541 |
+
if not response: continue
|
| 542 |
+
|
| 543 |
+
data = response.json()
|
| 544 |
+
for dataset in data:
|
| 545 |
+
dataset_id = dataset["id"].replace("/", "_")
|
| 546 |
+
logger.info(f"Traitement du dataset: {dataset['id']}")
|
| 547 |
+
dataset_url = f"{base_url}/datasets/{dataset['id']}"
|
| 548 |
+
dataset_response = make_request(dataset_url, headers=headers)
|
| 549 |
+
|
| 550 |
+
if dataset_response:
|
| 551 |
+
dataset_data = dataset_response.json()
|
| 552 |
+
description = clean_html(dataset_data.get("description", ""))
|
| 553 |
+
if not description or len(description) < 100: continue
|
| 554 |
+
tags = dataset_data.get("tags", [])
|
| 555 |
+
tags_text = ", ".join(tags) if tags else "No tags"
|
| 556 |
+
answer = f"Dataset: {dataset_data.get('id', '')}\nDownloads: {dataset_data.get('downloads', 0)}\nTags: {tags_text}\n\n{description}"
|
| 557 |
+
|
| 558 |
+
save_qa_pair(
|
| 559 |
+
question=f"What is the {dataset_data.get('id', '')} dataset about?", answer=answer,
|
| 560 |
+
category="security", subcategory="dataset", source=f"huggingface_{dataset_id}", tags=tags
|
| 561 |
+
)
|
| 562 |
+
time.sleep(random.uniform(1, 3))
|
| 563 |
+
logger.info("Collecte des données Hugging Face terminée.")
|
| 564 |
+
|
| 565 |
+
def collect_nvd_data():
|
| 566 |
+
logger.info("Début de la collecte des données NVD...")
|
| 567 |
+
base_url = "https://services.nvd.nist.gov/rest/json/cves/2.0"
|
| 568 |
+
headers = {"Accept": "application/json"}
|
| 569 |
+
if config.USE_API_KEYS:
|
| 570 |
+
key = os.getenv('NVD_API_KEY')
|
| 571 |
+
headers["apiKey"] = key
|
| 572 |
+
|
| 573 |
+
params = {"resultsPerPage": 50}
|
| 574 |
+
response = make_request(base_url, headers=headers, params=params)
|
| 575 |
+
if not response:
|
| 576 |
+
logger.warning("Impossible de récupérer les données du NVD.")
|
| 577 |
+
return
|
| 578 |
+
|
| 579 |
+
data = response.json()
|
| 580 |
+
vulnerabilities = data.get("vulnerabilities", [])
|
| 581 |
+
logger.info(f"Traitement de {len(vulnerabilities)} vulnérabilités...")
|
| 582 |
+
|
| 583 |
+
for vuln in vulnerabilities:
|
| 584 |
+
cve_data = vuln.get("cve", {})
|
| 585 |
+
cve_id = cve_data.get("id", "")
|
| 586 |
+
descriptions = cve_data.get("descriptions", [])
|
| 587 |
+
description = next((desc.get("value", "") for desc in descriptions if desc.get("lang") == "en"), "")
|
| 588 |
+
if not description or len(description) < 50: continue
|
| 589 |
+
|
| 590 |
+
cvss_v3 = cve_data.get("metrics", {}).get("cvssMetricV31", [{}])[0].get("cvssData", {})
|
| 591 |
+
severity = cvss_v3.get("baseSeverity", "UNKNOWN")
|
| 592 |
+
score = cvss_v3.get("baseScore", 0)
|
| 593 |
+
references = [ref.get("url", "") for ref in cve_data.get("references", [])]
|
| 594 |
+
|
| 595 |
+
answer = f"CVE ID: {cve_id}\nSeverity: {severity}\nCVSS Score: {score}\nReferences: {', '.join(references[:5])}\n\nDescription: {description}"
|
| 596 |
+
|
| 597 |
+
save_qa_pair(
|
| 598 |
+
question=f"What is the vulnerability {cve_id}?", answer=answer,
|
| 599 |
+
category="security", subcategory="vulnerability", source=f"nvd_{cve_id}"
|
| 600 |
+
)
|
| 601 |
+
logger.info("Collecte des données NVD terminée.")
|
| 602 |
+
|
| 603 |
+
def collect_stack_exchange_data(queries):
|
| 604 |
+
logger.info("Début de la collecte des données Stack Exchange...")
|
| 605 |
+
base_url = "https://api.stackexchange.com/2.3"
|
| 606 |
+
params_base = {"pagesize": 10, "order": "desc", "sort": "votes", "filter": "withbody"}
|
| 607 |
+
if config.USE_API_KEYS:
|
| 608 |
+
key = os.getenv('STACK_EXCHANGE_API_KEY')
|
| 609 |
+
params_base["key"] = key
|
| 610 |
+
|
| 611 |
+
sites = [
|
| 612 |
+
{"site": "security", "category": "security", "subcategory": "security"},
|
| 613 |
+
{"site": "devops", "category": "devsecops", "subcategory": "devops"}
|
| 614 |
+
]
|
| 615 |
+
|
| 616 |
+
tags_by_site = {
|
| 617 |
+
"security": ["security", "vulnerability"],
|
| 618 |
+
"devops": ["devops", "ci-cd"]
|
| 619 |
+
}
|
| 620 |
+
|
| 621 |
+
for site_config in sites:
|
| 622 |
+
site = site_config["site"]
|
| 623 |
+
category = site_config["category"]
|
| 624 |
+
subcategory = site_config["subcategory"]
|
| 625 |
+
logger.info(f"Collecte des données du site: {site}")
|
| 626 |
+
tags = tags_by_site.get(site, []) + (queries.split('\n') if queries else [])
|
| 627 |
+
|
| 628 |
+
for tag in list(set(tags)):
|
| 629 |
+
logger.info(f"Recherche de questions avec le tag: {tag}")
|
| 630 |
+
questions_url = f"{base_url}/questions"
|
| 631 |
+
params = {**params_base, "site": site, "tagged": tag}
|
| 632 |
+
|
| 633 |
+
response = make_request(questions_url, params=params)
|
| 634 |
+
if not response: continue
|
| 635 |
+
|
| 636 |
+
questions_data = response.json()
|
| 637 |
+
for question in questions_data.get("items", []):
|
| 638 |
+
question_id = question.get("question_id")
|
| 639 |
+
title = question.get("title", "")
|
| 640 |
+
body = clean_html(question.get("body", ""))
|
| 641 |
+
if not body or len(body) < 50: continue
|
| 642 |
+
|
| 643 |
+
answers_url = f"{base_url}/questions/{question_id}/answers"
|
| 644 |
+
answers_params = {**params_base, "site": site}
|
| 645 |
+
answers_response = make_request(answers_url, params=answers_params)
|
| 646 |
+
answer_body = ""
|
| 647 |
+
if answers_response and answers_response.json().get("items"):
|
| 648 |
+
answer_body = clean_html(answers_response.json()["items"][0].get("body", ""))
|
| 649 |
+
|
| 650 |
+
if answer_body:
|
| 651 |
+
save_qa_pair(
|
| 652 |
+
question=title, answer=answer_body, category=category,
|
| 653 |
+
subcategory=subcategory, source=f"{site}_{question_id}", tags=question.get("tags", [])
|
| 654 |
+
)
|
| 655 |
+
time.sleep(random.uniform(1, 3))
|
| 656 |
+
logger.info("Collecte des données Stack Exchange terminée.")
|
| 657 |
+
|
| 658 |
+
def run_data_collection(sources, queries):
|
| 659 |
+
st.session_state.bot_status = "En cours d'exécution"
|
| 660 |
+
st.session_state.logs = []
|
| 661 |
+
|
| 662 |
+
check_api_keys()
|
| 663 |
+
|
| 664 |
+
progress_bar = st.progress(0)
|
| 665 |
+
status_text = st.empty()
|
| 666 |
+
|
| 667 |
+
enabled_sources = [s for s, enabled in sources.items() if enabled]
|
| 668 |
+
total_sources = len(enabled_sources)
|
| 669 |
+
completed_sources = 0
|
| 670 |
+
|
| 671 |
+
for source_name in enabled_sources:
|
| 672 |
+
status_text.text(f"Collecte des données de {source_name}...")
|
| 673 |
+
try:
|
| 674 |
+
if source_name == "Kaggle":
|
| 675 |
+
collect_kaggle_data(queries.get("Kaggle", ""))
|
| 676 |
+
elif source_name == "GitHub":
|
| 677 |
+
collect_github_data(queries.get("GitHub", ""))
|
| 678 |
+
elif source_name == "Hugging Face":
|
| 679 |
+
collect_huggingface_data(queries.get("Hugging Face", ""))
|
| 680 |
+
elif source_name == "NVD":
|
| 681 |
+
collect_nvd_data()
|
| 682 |
+
elif source_name == "Stack Exchange":
|
| 683 |
+
collect_stack_exchange_data(queries.get("Stack Exchange", ""))
|
| 684 |
+
except Exception as e:
|
| 685 |
+
logger.error(f"Erreur fatale lors de la collecte de {source_name}: {str(e)}")
|
| 686 |
+
|
| 687 |
+
completed_sources += 1
|
| 688 |
+
progress_bar.progress(completed_sources / total_sources)
|
| 689 |
+
|
| 690 |
+
st.session_state.bot_status = "Arrêté"
|
| 691 |
+
st.info("Collecte des données terminée!")
|
| 692 |
+
progress_bar.empty()
|
| 693 |
+
status_text.empty()
|
| 694 |
+
|
| 695 |
+
def main():
|
| 696 |
+
st.title("DevSecOps Data Bot")
|
| 697 |
+
st.markdown("""
|
| 698 |
+
Ce bot est conçu pour collecter des données de diverses sources (GitHub, Kaggle, Hugging Face, NVD, Stack Exchange)
|
| 699 |
+
afin de construire un jeu de données de questions/réponses DevSecOps.
|
| 700 |
+
""")
|
| 701 |
+
|
| 702 |
+
tabs = st.tabs(["Bot", "Statistiques & Données", "Configuration"])
|
| 703 |
+
|
| 704 |
+
with tabs[0]:
|
| 705 |
+
st.header("État du bot")
|
| 706 |
+
col1, col2, col3 = st.columns(3)
|
| 707 |
+
with col1:
|
| 708 |
+
st.metric("Statut", st.session_state.bot_status)
|
| 709 |
+
with col2:
|
| 710 |
+
st.metric("Paires Q/R", st.session_state.total_qa_pairs)
|
| 711 |
+
with col3:
|
| 712 |
+
st.metric("Statut du serveur LLM", st.session_state.server_status)
|
| 713 |
+
|
| 714 |
+
st.markdown("---")
|
| 715 |
+
|
| 716 |
+
st.header("Lancer la collecte")
|
| 717 |
+
|
| 718 |
+
st.subheader("Sources de données")
|
| 719 |
+
sources_columns = st.columns(5)
|
| 720 |
+
sources = {
|
| 721 |
+
"GitHub": sources_columns[0].checkbox("GitHub", value=True),
|
| 722 |
+
"Kaggle": sources_columns[1].checkbox("Kaggle", value=True),
|
| 723 |
+
"Hugging Face": sources_columns[2].checkbox("Hugging Face", value=True),
|
| 724 |
+
"NVD": sources_columns[3].checkbox("NVD", value=True),
|
| 725 |
+
"Stack Exchange": sources_columns[4].checkbox("Stack Exchange", value=True),
|
| 726 |
+
}
|
| 727 |
+
|
| 728 |
+
st.subheader("Requêtes de recherche")
|
| 729 |
+
queries = {}
|
| 730 |
+
queries["GitHub"] = st.text_area("Requêtes GitHub (une par ligne)", "topic:devsecops\ntopic:security\nvulnerability")
|
| 731 |
+
queries["Kaggle"] = st.text_area("Requêtes Kaggle (une par ligne)", "cybersecurity\nvulnerability dataset\npenetration testing")
|
| 732 |
+
queries["Hugging Face"] = st.text_area("Requêtes Hugging Face (une par ligne)", "security dataset\nvulnerability\nlanguage model security")
|
| 733 |
+
queries["Stack Exchange"] = st.text_area("Tags Stack Exchange (un par ligne)", "devsecops\nsecurity\nvulnerability")
|
| 734 |
+
|
| 735 |
+
st.markdown("---")
|
| 736 |
+
|
| 737 |
+
if st.session_state.bot_status == "Arrêté":
|
| 738 |
+
if st.button("Lancer la collecte", use_container_width=True, type="primary"):
|
| 739 |
+
st.session_state.logs = []
|
| 740 |
+
st.session_state.qa_data = []
|
| 741 |
+
st.session_state.total_qa_pairs = 0
|
| 742 |
+
run_data_collection(sources, queries)
|
| 743 |
+
else:
|
| 744 |
+
st.warning("La collecte est en cours. Veuillez attendre qu'elle se termine.")
|
| 745 |
+
if st.button("Forcer l'arrêt", use_container_width=True, type="secondary"):
|
| 746 |
+
st.session_state.bot_status = "Arrêté"
|
| 747 |
+
st.info("La collecte a été arrêtée manuellement.")
|
| 748 |
+
|
| 749 |
+
st.markdown("---")
|
| 750 |
+
st.subheader("Logs d'exécution")
|
| 751 |
+
log_container = st.container(border=True)
|
| 752 |
+
with log_container:
|
| 753 |
+
for log in st.session_state.logs:
|
| 754 |
+
st.text(log)
|
| 755 |
+
|
| 756 |
+
with tabs[1]:
|
| 757 |
+
st.header("Statistiques")
|
| 758 |
+
if st.session_state.qa_data:
|
| 759 |
+
df = pd.DataFrame(st.session_state.qa_data)
|
| 760 |
+
|
| 761 |
+
st.subheader("Aperçu des données")
|
| 762 |
+
st.dataframe(df, use_container_width=True)
|
| 763 |
+
|
| 764 |
+
st.subheader("Répartition par source")
|
| 765 |
+
source_counts = df['source'].apply(lambda x: x.split('_')[0]).value_counts().reset_index()
|
| 766 |
+
source_counts.columns = ['Source', 'Nombre']
|
| 767 |
+
fig_source = px.bar(source_counts, x='Source', y='Nombre', title="Nombre de paires Q/R par source")
|
| 768 |
+
st.plotly_chart(fig_source, use_container_width=True)
|
| 769 |
+
|
| 770 |
+
st.subheader("Répartition par catégorie")
|
| 771 |
+
category_counts = df['category'].value_counts().reset_index()
|
| 772 |
+
category_counts.columns = ['Catégorie', 'Nombre']
|
| 773 |
+
fig_cat = px.pie(category_counts, names='Catégorie', values='Nombre', title="Répartition par catégorie")
|
| 774 |
+
st.plotly_chart(fig_cat, use_container_width=True)
|
| 775 |
+
|
| 776 |
+
st.subheader("Téléchargement des données")
|
| 777 |
+
col1, col2 = st.columns(2)
|
| 778 |
+
with col1:
|
| 779 |
+
json_data = json.dumps(st.session_state.qa_data, indent=2)
|
| 780 |
+
st.download_button(
|
| 781 |
+
label="Télécharger JSON",
|
| 782 |
+
data=json_data,
|
| 783 |
+
file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
| 784 |
+
mime="application/json",
|
| 785 |
+
use_container_width=True
|
| 786 |
+
)
|
| 787 |
+
with col2:
|
| 788 |
+
csv_data = df.to_csv(index=False)
|
| 789 |
+
st.download_button(
|
| 790 |
+
label="Télécharger CSV",
|
| 791 |
+
data=csv_data,
|
| 792 |
+
file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 793 |
+
mime="text/csv",
|
| 794 |
+
use_container_width=True
|
| 795 |
+
)
|
| 796 |
+
else:
|
| 797 |
+
st.info("Aucune donnée à afficher. Lancez d'abord la collecte de données.")
|
| 798 |
+
|
| 799 |
+
with tabs[2]:
|
| 800 |
+
st.header("Configuration Avancée")
|
| 801 |
+
st.subheader("Paramètres du serveur LLM")
|
| 802 |
+
|
| 803 |
+
llm_col1, llm_col2 = st.columns(2)
|
| 804 |
+
with llm_col1:
|
| 805 |
+
if st.button("Démarrer le serveur LLM", type="primary", use_container_width=True):
|
| 806 |
+
start_llm_server()
|
| 807 |
+
if st.button("Vérifier le statut du serveur", use_container_width=True):
|
| 808 |
+
check_server_status()
|
| 809 |
+
st.rerun()
|
| 810 |
+
with llm_col2:
|
| 811 |
+
if st.button("Arrêter le serveur LLM", type="secondary", use_container_width=True):
|
| 812 |
+
stop_llm_server()
|
| 813 |
+
|
| 814 |
+
st.markdown("---")
|
| 815 |
+
|
| 816 |
+
st.subheader("Paramètres d'enrichissement IA")
|
| 817 |
+
st.session_state.enable_enrichment = st.checkbox("Activer l'enrichissement IA", value=st.session_state.enable_enrichment, help="Utilise le LLM pour améliorer les paires Q/R.")
|
| 818 |
+
st.session_state.min_relevance = st.slider("Score de pertinence minimum", 0, 100, st.session_state.min_relevance, help="Les contenus en dessous de ce score ne seront pas traités.")
|
| 819 |
+
st.session_state.temperature = st.slider("Température de l'IA", 0.0, 1.0, st.session_state.temperature, help="Contrôle la créativité de l'IA. 0.0 = plus déterministe, 1.0 = plus créatif.")
|
| 820 |
+
st.session_state.n_predict = st.slider("Nombre de tokens", 128, 1024, st.session_state.n_predict, help="Nombre maximum de tokens à générer par l'IA.")
|
| 821 |
+
|
| 822 |
+
if __name__ == "__main__":
|
| 823 |
+
create_initial_setup()
|
| 824 |
+
main()
|
app_old.py
ADDED
|
@@ -0,0 +1,901 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import time
|
| 5 |
+
import random
|
| 6 |
+
import logging
|
| 7 |
+
import requests
|
| 8 |
+
import json
|
| 9 |
+
import re
|
| 10 |
+
import subprocess
|
| 11 |
+
import shutil
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
import streamlit as st
|
| 16 |
+
import pandas as pd
|
| 17 |
+
import plotly.express as px
|
| 18 |
+
import plotly.graph_objects as go
|
| 19 |
+
from bs4 import BeautifulSoup
|
| 20 |
+
import html2text
|
| 21 |
+
import kaggle
|
| 22 |
+
|
| 23 |
+
# Importation des configurations
|
| 24 |
+
from config import app_config as config
|
| 25 |
+
# Configuration de la page Streamlit
|
| 26 |
+
st.set_page_config(
|
| 27 |
+
page_title="DevSecOps Data Bot",
|
| 28 |
+
layout="wide",
|
| 29 |
+
initial_sidebar_state="expanded"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Configuration du logging
|
| 33 |
+
def setup_logging():
|
| 34 |
+
log_dir = Path("logs")
|
| 35 |
+
log_dir.mkdir(exist_ok=True)
|
| 36 |
+
|
| 37 |
+
log_file = log_dir / f"data_collector_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
|
| 38 |
+
|
| 39 |
+
logging.basicConfig(
|
| 40 |
+
level=logging.INFO,
|
| 41 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 42 |
+
handlers=[
|
| 43 |
+
logging.FileHandler(log_file),
|
| 44 |
+
logging.StreamHandler(sys.stdout)
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
return logging.getLogger(__name__)
|
| 48 |
+
|
| 49 |
+
logger = setup_logging()
|
| 50 |
+
|
| 51 |
+
# Création des répertoires et scripts nécessaires
|
| 52 |
+
def create_initial_setup():
|
| 53 |
+
dirs = [
|
| 54 |
+
"data/devsecops/qa", "data/security/qa", "data/development/qa",
|
| 55 |
+
"data/data_analysis/qa", "logs", "config", "server", "scripts",
|
| 56 |
+
"models", "llama.cpp", ".kaggle"
|
| 57 |
+
]
|
| 58 |
+
for dir_path in dirs:
|
| 59 |
+
Path(dir_path).mkdir(parents=True, exist_ok=True)
|
| 60 |
+
|
| 61 |
+
download_script = Path("scripts/download_with_aria2c.sh")
|
| 62 |
+
if not download_script.exists():
|
| 63 |
+
with open(download_script, 'w') as f:
|
| 64 |
+
f.write("""#!/bin/bash
|
| 65 |
+
URL=$1
|
| 66 |
+
OUTPUT=$2
|
| 67 |
+
MAX_RETRIES=5
|
| 68 |
+
for i in $(seq 1 $MAX_RETRIES); do
|
| 69 |
+
echo "Tentative $i/$MAX_RETRIES: $URL"
|
| 70 |
+
aria2c -x 16 -s 16 -d "$(dirname "$OUTPUT")" -o "$(basename "$OUTPUT")" "$URL" && break
|
| 71 |
+
sleep 10
|
| 72 |
+
done
|
| 73 |
+
""")
|
| 74 |
+
os.chmod(download_script, 0o755)
|
| 75 |
+
|
| 76 |
+
llama_dir = Path("llama.cpp")
|
| 77 |
+
if not llama_dir.exists():
|
| 78 |
+
st.info("Installation de llama.cpp...")
|
| 79 |
+
subprocess.run(["git", "clone", "https://github.com/ggerganov/llama.cpp.git", str(llama_dir)])
|
| 80 |
+
os.chdir(str(llama_dir))
|
| 81 |
+
subprocess.run(["mkdir", "-p", "build"])
|
| 82 |
+
os.chdir("build")
|
| 83 |
+
subprocess.run(["cmake", "..", "-DLLAMA_CURL=1"])
|
| 84 |
+
subprocess.run(["cmake", "--build", ".", "--config", "Release"])
|
| 85 |
+
os.chdir(Path(__file__).parent)
|
| 86 |
+
|
| 87 |
+
model_path = Path("models/qwen2.5-1.5b-instruct-q8_0.gguf")
|
| 88 |
+
if not model_path.exists():
|
| 89 |
+
st.warning("Le modèle GGUF n'existe pas. Téléchargement en cours...")
|
| 90 |
+
Path("models").mkdir(exist_ok=True)
|
| 91 |
+
model_url = "https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF/resolve/main/qwen2.5-1.5b-instruct-q8_0.gguf"
|
| 92 |
+
try:
|
| 93 |
+
subprocess.run(["bash", str(download_script), model_url, str(model_path)])
|
| 94 |
+
if model_path.exists():
|
| 95 |
+
st.success("Modèle GGUF téléchargé avec succès!")
|
| 96 |
+
else:
|
| 97 |
+
st.error("Échec du téléchargement du modèle GGUF. Veuillez le placer manuellement dans le dossier models/")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
st.error(f"Erreur lors du téléchargement du modèle: {str(e)}")
|
| 100 |
+
|
| 101 |
+
# Convertisseur HTML vers texte
|
| 102 |
+
h = html2text.HTML2Text()
|
| 103 |
+
h.ignore_links = False
|
| 104 |
+
h.ignore_images = True
|
| 105 |
+
h.ignore_emphasis = False
|
| 106 |
+
h.body_width = 0
|
| 107 |
+
|
| 108 |
+
# Fonctions pour le serveur LLM (llama.cpp)
|
| 109 |
+
def check_server_status():
|
| 110 |
+
try:
|
| 111 |
+
response = requests.get("http://localhost:8080/health", timeout=2)
|
| 112 |
+
if response.status_code == 200:
|
| 113 |
+
st.session_state.server_status = "Actif"
|
| 114 |
+
return True
|
| 115 |
+
else:
|
| 116 |
+
st.session_state.server_status = "Inactif"
|
| 117 |
+
return False
|
| 118 |
+
except requests.exceptions.RequestException:
|
| 119 |
+
st.session_state.server_status = "Inactif"
|
| 120 |
+
return False
|
| 121 |
+
|
| 122 |
+
def start_llm_server():
|
| 123 |
+
if check_server_status():
|
| 124 |
+
st.info("Le serveur llama.cpp est déjà en cours d'exécution.")
|
| 125 |
+
return
|
| 126 |
+
|
| 127 |
+
model_path = Path("models/qwen2.5-1.5b-instruct-q8_0.gguf")
|
| 128 |
+
if not model_path.exists():
|
| 129 |
+
st.error("Le modèle GGUF n'existe pas. Veuillez le placer dans le dossier models/.")
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
llama_server = Path("llama.cpp/build/bin/llama-server")
|
| 133 |
+
if not llama_server.exists():
|
| 134 |
+
st.error("llama.cpp n'est pas compilé. Veuillez compiler llama.cpp d'abord.")
|
| 135 |
+
return
|
| 136 |
+
|
| 137 |
+
start_script = Path("server/start_server.sh")
|
| 138 |
+
if not start_script.exists():
|
| 139 |
+
with open(start_script, 'w') as f:
|
| 140 |
+
f.write(f"""#!/bin/bash
|
| 141 |
+
MODEL_PATH="{str(model_path)}"
|
| 142 |
+
if [ ! -f "$MODEL_PATH" ]; then
|
| 143 |
+
echo "Le modèle GGUF est introuvable à: $MODEL_PATH"
|
| 144 |
+
exit 1
|
| 145 |
+
fi
|
| 146 |
+
"{str(llama_server)}" \\
|
| 147 |
+
-m "$MODEL_PATH" \\
|
| 148 |
+
--port 8080 \\
|
| 149 |
+
--host 0.0.0.0 \\
|
| 150 |
+
-c 4096 \\
|
| 151 |
+
-ngl 999 \\
|
| 152 |
+
--threads 8 \\
|
| 153 |
+
> "logs/llama_server.log" 2>&1 &
|
| 154 |
+
echo $! > "server/server.pid"
|
| 155 |
+
""")
|
| 156 |
+
os.chmod(start_script, 0o755)
|
| 157 |
+
|
| 158 |
+
try:
|
| 159 |
+
subprocess.Popen(["bash", str(start_script)])
|
| 160 |
+
st.success("Le serveur llama.cpp est en cours de démarrage...")
|
| 161 |
+
time.sleep(5)
|
| 162 |
+
if check_server_status():
|
| 163 |
+
st.success("Serveur llama.cpp démarré avec succès!")
|
| 164 |
+
else:
|
| 165 |
+
st.error("Le serveur n'a pas pu démarrer. Vérifiez les logs dans le dossier logs/.")
|
| 166 |
+
except Exception as e:
|
| 167 |
+
st.error(f"Erreur lors du démarrage du serveur: {str(e)}")
|
| 168 |
+
|
| 169 |
+
def stop_llm_server():
|
| 170 |
+
stop_script = Path("server/stop_server.sh")
|
| 171 |
+
if not stop_script.exists():
|
| 172 |
+
with open(stop_script, 'w') as f:
|
| 173 |
+
f.write("""#!/bin/bash
|
| 174 |
+
PID_FILE="server/server.pid"
|
| 175 |
+
if [ -f "$PID_FILE" ]; then
|
| 176 |
+
PID=$(cat "$PID_FILE")
|
| 177 |
+
kill $PID
|
| 178 |
+
rm "$PID_FILE"
|
| 179 |
+
echo "Serveur llama.cpp arrêté."
|
| 180 |
+
else
|
| 181 |
+
echo "Aucun PID de serveur trouvé."
|
| 182 |
+
fi
|
| 183 |
+
""")
|
| 184 |
+
os.chmod(stop_script, 0o755)
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
subprocess.run(["bash", str(stop_script)])
|
| 188 |
+
st.success("Le serveur llama.cpp est en cours d'arrêt...")
|
| 189 |
+
time.sleep(2)
|
| 190 |
+
if not check_server_status():
|
| 191 |
+
st.success("Serveur llama.cpp arrêté avec succès!")
|
| 192 |
+
else:
|
| 193 |
+
st.warning("Le serveur n'a pas pu être arrêté correctement.")
|
| 194 |
+
except Exception as e:
|
| 195 |
+
st.error(f"Erreur lors de l'arrêt du serveur: {str(e)}")
|
| 196 |
+
|
| 197 |
+
def load_prompts():
|
| 198 |
+
prompts_file = Path("config/prompts.json")
|
| 199 |
+
if not prompts_file.exists():
|
| 200 |
+
default_prompts = {
|
| 201 |
+
"enrich_qa": {
|
| 202 |
+
"system": "Tu es un expert DevSecOps. Améliore cette paire question/réponse en y ajoutant des tags, des signatures d'attaques potentielles, et en structurant les informations. Réponds uniquement avec un objet JSON.",
|
| 203 |
+
"prompt_template": "Question originale: {question}\nRéponse originale: {answer}\nContexte: {context}\n\nFournis une version améliorée sous forme de JSON:\n{{\n \"question\": \"question améliorée\",\n \"answer\": \"réponse améliorée\",\n \"tags\": [\"tag1\", \"tag2\"],\n \"attack_signatures\": [\"signature1\", \"signature2\"]\n}}"
|
| 204 |
+
},
|
| 205 |
+
"analyze_relevance": {
|
| 206 |
+
"system": "Analyse ce contenu et détermine s'il est pertinent pour DevSecOps. Si pertinent, extrais les signatures d'attaques connues. Réponds uniquement avec un objet JSON.",
|
| 207 |
+
"prompt_template": "Contenu: {content}...\n\nRéponds sous forme de JSON:\n{{\n \"relevant\": true,\n \"attack_signatures\": [\"signature1\", \"signature2\"],\n \"security_tags\": [\"tag1\", \"tag2\"],\n \"it_relevance_score\": 0-100\n}}"
|
| 208 |
+
},
|
| 209 |
+
"generate_queries": {
|
| 210 |
+
"system": "Analyse les données actuelles et génère 5 nouvelles requêtes de recherche pour trouver plus de contenu DevSecOps pertinent, en particulier des signatures d'attaques et vulnérabilités. Réponds uniquement avec un objet JSON.",
|
| 211 |
+
"prompt_template": "Données actuelles: {current_data}...\n\nRéponds sous forme de JSON:\n{{\n \"queries\": [\"query1\", \"query2\", \"query3\", \"query4\", \"query5\"]\n}}"
|
| 212 |
+
}
|
| 213 |
+
}
|
| 214 |
+
with open(prompts_file, 'w') as f:
|
| 215 |
+
json.dump(default_prompts, f, indent=2)
|
| 216 |
+
|
| 217 |
+
with open(prompts_file, 'r', encoding='utf-8') as f:
|
| 218 |
+
return json.load(f)
|
| 219 |
+
|
| 220 |
+
PROMPTS = load_prompts()
|
| 221 |
+
|
| 222 |
+
class IAEnricher:
|
| 223 |
+
def __init__(self):
|
| 224 |
+
self.server_url = config.LLM_SERVER_URL
|
| 225 |
+
self.available = check_server_status()
|
| 226 |
+
if self.available:
|
| 227 |
+
logger.info("Serveur llama.cpp détecté et prêt.")
|
| 228 |
+
else:
|
| 229 |
+
logger.warning("Serveur llama.cpp non disponible. Les fonctionnalités d'IA seront désactivées.")
|
| 230 |
+
|
| 231 |
+
def _get_qwen_response(self, prompt, **kwargs):
|
| 232 |
+
if not self.available:
|
| 233 |
+
return None
|
| 234 |
+
|
| 235 |
+
payload = {
|
| 236 |
+
"prompt": prompt,
|
| 237 |
+
"n_predict": kwargs.get('n_predict', 512),
|
| 238 |
+
"temperature": kwargs.get('temperature', 0.7),
|
| 239 |
+
"stop": ["<|im_end|>", "</s>"]
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
try:
|
| 243 |
+
response = requests.post(self.server_url, json=payload, timeout=60)
|
| 244 |
+
if response.status_code == 200:
|
| 245 |
+
return response.json().get('content', '')
|
| 246 |
+
else:
|
| 247 |
+
logger.error(f"Erreur du serveur LLM: {response.status_code} - {response.text}")
|
| 248 |
+
return None
|
| 249 |
+
except requests.exceptions.RequestException as e:
|
| 250 |
+
logger.error(f"Erreur de connexion au serveur LLM: {str(e)}")
|
| 251 |
+
return None
|
| 252 |
+
|
| 253 |
+
def enrich_qa_pair(self, question, answer, context=""):
|
| 254 |
+
if not self.available or not st.session_state.enable_enrichment:
|
| 255 |
+
return question, answer, [], []
|
| 256 |
+
|
| 257 |
+
prompt_template = PROMPTS.get("enrich_qa", {}).get("prompt_template", "")
|
| 258 |
+
system_prompt = PROMPTS.get("enrich_qa", {}).get("system", "")
|
| 259 |
+
|
| 260 |
+
full_prompt = f"{system_prompt}\n\n{prompt_template.format(question=question, answer=answer, context=context[:500])}"
|
| 261 |
+
response_text = self._get_qwen_response(full_prompt, n_predict=1024)
|
| 262 |
+
|
| 263 |
+
if response_text:
|
| 264 |
+
try:
|
| 265 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 266 |
+
if json_match:
|
| 267 |
+
enriched_data = json.loads(json_match.group())
|
| 268 |
+
return (
|
| 269 |
+
enriched_data.get('question', question),
|
| 270 |
+
enriched_data.get('answer', answer),
|
| 271 |
+
enriched_data.get('tags', []),
|
| 272 |
+
enriched_data.get('attack_signatures', [])
|
| 273 |
+
)
|
| 274 |
+
except json.JSONDecodeError as e:
|
| 275 |
+
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 276 |
+
|
| 277 |
+
return question, answer, [], []
|
| 278 |
+
|
| 279 |
+
def analyze_content_relevance(self, content):
|
| 280 |
+
if not self.available or not st.session_state.enable_enrichment:
|
| 281 |
+
return True, [], [], 50
|
| 282 |
+
|
| 283 |
+
prompt_template = PROMPTS.get("analyze_relevance", {}).get("prompt_template", "")
|
| 284 |
+
system_prompt = PROMPTS.get("analyze_relevance", {}).get("system", "")
|
| 285 |
+
|
| 286 |
+
full_prompt = f"{system_prompt}\n\n{prompt_template.format(content=content[:1500])}"
|
| 287 |
+
response_text = self._get_qwen_response(full_prompt, n_predict=256, temperature=st.session_state.temperature)
|
| 288 |
+
|
| 289 |
+
if response_text:
|
| 290 |
+
try:
|
| 291 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 292 |
+
if json_match:
|
| 293 |
+
analysis = json.loads(json_match.group())
|
| 294 |
+
return (
|
| 295 |
+
analysis.get('relevant', True),
|
| 296 |
+
analysis.get('attack_signatures', []),
|
| 297 |
+
analysis.get('security_tags', []),
|
| 298 |
+
analysis.get('it_relevance_score', 50)
|
| 299 |
+
)
|
| 300 |
+
except json.JSONDecodeError as e:
|
| 301 |
+
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 302 |
+
return True, [], [], 50
|
| 303 |
+
|
| 304 |
+
def generate_adaptive_queries(self, current_data):
|
| 305 |
+
if not self.available or not st.session_state.enable_enrichment:
|
| 306 |
+
return []
|
| 307 |
+
|
| 308 |
+
prompt_template = PROMPTS.get("generate_queries", {}).get("prompt_template", "")
|
| 309 |
+
system_prompt = PROMPTS.get("generate_queries", {}).get("system", "")
|
| 310 |
+
|
| 311 |
+
full_prompt = f"{system_prompt}\n\n{prompt_template.format(current_data=current_data[:1000])}"
|
| 312 |
+
response_text = self._get_qwen_response(full_prompt, n_predict=st.session_state.n_predict)
|
| 313 |
+
|
| 314 |
+
if response_text:
|
| 315 |
+
try:
|
| 316 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 317 |
+
if json_match:
|
| 318 |
+
queries_data = json.loads(json_match.group())
|
| 319 |
+
return queries_data.get('queries', [])
|
| 320 |
+
except json.JSONDecodeError as e:
|
| 321 |
+
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 322 |
+
return []
|
| 323 |
+
|
| 324 |
+
ia_enricher = IAEnricher()
|
| 325 |
+
|
| 326 |
+
def check_api_keys():
|
| 327 |
+
keys = {
|
| 328 |
+
'GITHUB_API_TOKEN': os.getenv('GITHUB_API_TOKEN'),
|
| 329 |
+
'HUGGINGFACE_API_TOKEN': os.getenv('HUGGINGFACE_API_TOKEN'),
|
| 330 |
+
'NVD_API_KEY': os.getenv('NVD_API_KEY'),
|
| 331 |
+
'STACK_EXCHANGE_API_KEY': os.getenv('STACK_EXCHANGE_API_KEY')
|
| 332 |
+
}
|
| 333 |
+
|
| 334 |
+
valid_keys = {k: v for k, v in keys.items() if v and v != f'your_{k.lower()}_here'}
|
| 335 |
+
|
| 336 |
+
config.USE_API_KEYS = len(valid_keys) == len(keys)
|
| 337 |
+
if not config.USE_API_KEYS:
|
| 338 |
+
missing = set(keys.keys()) - set(valid_keys.keys())
|
| 339 |
+
logger.warning(f"Clés d'API manquantes ou non configurées: {', '.join(missing)}")
|
| 340 |
+
logger.warning("Le bot fonctionnera en mode dégradé avec des pauses plus longues.")
|
| 341 |
+
else:
|
| 342 |
+
logger.info("Toutes les clés d'API sont configurées.")
|
| 343 |
+
return config.USE_API_KEYS
|
| 344 |
+
|
| 345 |
+
def make_request(url, headers=None, params=None, is_api_call=True):
|
| 346 |
+
global REQUEST_COUNT
|
| 347 |
+
|
| 348 |
+
pause_factor = 1 if config.USE_API_KEYS else 2
|
| 349 |
+
|
| 350 |
+
if config.REQUEST_COUNT >= config.MAX_REQUESTS_BEFORE_PAUSE:
|
| 351 |
+
pause_time = random.uniform(config.MIN_PAUSE * pause_factor, config.MAX_PAUSE * pause_factor)
|
| 352 |
+
logger.info(f"Pause de {pause_time:.2f} secondes après {config.REQUEST_COUNT} requêtes...")
|
| 353 |
+
time.sleep(pause_time)
|
| 354 |
+
config.REQUEST_COUNT = 0
|
| 355 |
+
|
| 356 |
+
try:
|
| 357 |
+
response = requests.get(url, headers=headers, params=params, timeout=30)
|
| 358 |
+
config.REQUEST_COUNT += 1
|
| 359 |
+
|
| 360 |
+
if response.status_code == 200:
|
| 361 |
+
return response
|
| 362 |
+
elif response.status_code in [401, 403]:
|
| 363 |
+
logger.warning(f"Accès non autorisé à {url}. Vérifiez vos clés d'API.")
|
| 364 |
+
return None
|
| 365 |
+
elif response.status_code == 429:
|
| 366 |
+
retry_after = int(response.headers.get('Retry-After', 10))
|
| 367 |
+
logger.warning(f"Limite de débit atteinte. Pause de {retry_after} secondes...")
|
| 368 |
+
time.sleep(retry_after)
|
| 369 |
+
return make_request(url, headers, params, is_api_call)
|
| 370 |
+
else:
|
| 371 |
+
logger.warning(f"Statut HTTP {response.status_code} pour {url}")
|
| 372 |
+
return None
|
| 373 |
+
except requests.exceptions.RequestException as e:
|
| 374 |
+
logger.error(f"Erreur lors de la requête à {url}: {str(e)}")
|
| 375 |
+
return None
|
| 376 |
+
|
| 377 |
+
def clean_html(html_content):
|
| 378 |
+
if not html_content:
|
| 379 |
+
return ""
|
| 380 |
+
text = h.handle(html_content)
|
| 381 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 382 |
+
return text
|
| 383 |
+
|
| 384 |
+
def save_qa_pair(question, answer, category, subcategory, source, attack_signatures=None, tags=None):
|
| 385 |
+
global TOTAL_QA_PAIRS
|
| 386 |
+
|
| 387 |
+
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 388 |
+
enriched_question, enriched_answer, enriched_tags, enriched_signatures = ia_enricher.enrich_qa_pair(
|
| 389 |
+
question, answer, f"{category}/{subcategory}"
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
question = enriched_question
|
| 393 |
+
answer = enriched_answer
|
| 394 |
+
tags = list(set((tags or []) + enriched_tags))
|
| 395 |
+
attack_signatures = list(set((attack_signatures or []) + enriched_signatures))
|
| 396 |
+
|
| 397 |
+
save_dir = Path("data") / category / "qa"
|
| 398 |
+
save_dir.mkdir(parents=True, exist_ok=True)
|
| 399 |
+
|
| 400 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 401 |
+
filename = f"{subcategory}_{source}_{TOTAL_QA_PAIRS}_{timestamp}.json"
|
| 402 |
+
filename = re.sub(r'[^\w\s-]', '', filename).replace(' ', '_')
|
| 403 |
+
|
| 404 |
+
qa_data = {
|
| 405 |
+
"question": question,
|
| 406 |
+
"answer": answer,
|
| 407 |
+
"category": category,
|
| 408 |
+
"subcategory": subcategory,
|
| 409 |
+
"source": source,
|
| 410 |
+
"timestamp": timestamp,
|
| 411 |
+
"attack_signatures": attack_signatures or [],
|
| 412 |
+
"tags": tags or []
|
| 413 |
+
}
|
| 414 |
+
|
| 415 |
+
try:
|
| 416 |
+
with open(save_dir / filename, "w", encoding="utf-8") as f:
|
| 417 |
+
json.dump(qa_data, f, indent=2, ensure_ascii=False)
|
| 418 |
+
|
| 419 |
+
config.TOTAL_QA_PAIRS += 1
|
| 420 |
+
st.session_state.total_qa_pairs = config.TOTAL_QA_PAIRS
|
| 421 |
+
st.session_state.qa_data.append(qa_data)
|
| 422 |
+
|
| 423 |
+
logger.info(f"Paire Q/R sauvegardée: {filename} (Total: {config.TOTAL_QA_PAIRS})")
|
| 424 |
+
st.session_state.logs.append(f"Sauvegardé: {filename}")
|
| 425 |
+
except Exception as e:
|
| 426 |
+
logger.error(f"Erreur lors de la sauvegarde du fichier {filename}: {str(e)}")
|
| 427 |
+
|
| 428 |
+
def collect_kaggle_data(queries):
|
| 429 |
+
logger.info("Début de la collecte des données Kaggle...")
|
| 430 |
+
kaggle_dir = Path(".kaggle")
|
| 431 |
+
kaggle_json = kaggle_dir / "kaggle.json"
|
| 432 |
+
if not kaggle_json.exists():
|
| 433 |
+
logger.warning("Fichier kaggle.json non trouvé. Veuillez le placer dans le dossier .kaggle/")
|
| 434 |
+
return
|
| 435 |
+
|
| 436 |
+
os.environ['KAGGLE_CONFIG_DIR'] = str(kaggle_dir.absolute())
|
| 437 |
+
|
| 438 |
+
try:
|
| 439 |
+
kaggle.api.authenticate()
|
| 440 |
+
except Exception as e:
|
| 441 |
+
logger.error(f"Erreur d'authentification Kaggle: {str(e)}")
|
| 442 |
+
return
|
| 443 |
+
|
| 444 |
+
search_queries = queries.split('\n') if queries else ["cybersecurity", "vulnerability"]
|
| 445 |
+
|
| 446 |
+
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 447 |
+
adaptive_queries = ia_enricher.generate_adaptive_queries("Initial data keywords: " + ", ".join(search_queries))
|
| 448 |
+
search_queries.extend(adaptive_queries)
|
| 449 |
+
|
| 450 |
+
for query in list(set(search_queries)):
|
| 451 |
+
logger.info(f"Recherche de datasets Kaggle pour: {query}")
|
| 452 |
+
try:
|
| 453 |
+
datasets = kaggle.api.dataset_list(search=query, max_results=5)
|
| 454 |
+
for dataset in datasets:
|
| 455 |
+
dataset_ref = dataset.ref
|
| 456 |
+
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 457 |
+
is_relevant, _, _, relevance_score = ia_enricher.analyze_content_relevance(dataset.title + " " + dataset.subtitle)
|
| 458 |
+
if not is_relevant or relevance_score < st.session_state.min_relevance:
|
| 459 |
+
logger.info(f"Dataset non pertinent ({relevance_score}%): {dataset_ref}. Ignoré.")
|
| 460 |
+
continue
|
| 461 |
+
|
| 462 |
+
logger.info(f"Traitement du dataset: {dataset_ref}")
|
| 463 |
+
download_dir = Path("data") / "security" / "kaggle" / dataset_ref.replace('/', '_')
|
| 464 |
+
download_dir.mkdir(parents=True, exist_ok=True)
|
| 465 |
+
kaggle.api.dataset_download_files(dataset_ref, path=download_dir, unzip=True)
|
| 466 |
+
|
| 467 |
+
for file_path in download_dir.glob('*'):
|
| 468 |
+
if file_path.is_file() and file_path.suffix.lower() in ['.json', '.csv', '.txt']:
|
| 469 |
+
try:
|
| 470 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 471 |
+
file_content = f.read()[:5000]
|
| 472 |
+
is_relevant, signatures, security_tags, _ = ia_enricher.analyze_content_relevance(file_content)
|
| 473 |
+
if is_relevant:
|
| 474 |
+
save_qa_pair(
|
| 475 |
+
question=f"Quelles informations de sécurité contient le fichier {file_path.name} du dataset '{dataset.title}'?",
|
| 476 |
+
answer=file_content, category="security", subcategory="vulnerability",
|
| 477 |
+
source=f"kaggle_{dataset_ref}", attack_signatures=signatures, tags=security_tags
|
| 478 |
+
)
|
| 479 |
+
except Exception as e:
|
| 480 |
+
logger.error(f"Erreur lors du traitement du fichier {file_path}: {str(e)}")
|
| 481 |
+
time.sleep(random.uniform(2, 4))
|
| 482 |
+
except Exception as e:
|
| 483 |
+
logger.error(f"Erreur lors de la collecte des données Kaggle pour {query}: {str(e)}")
|
| 484 |
+
logger.info("Collecte des données Kaggle terminée.")
|
| 485 |
+
|
| 486 |
+
def collect_github_data(queries):
|
| 487 |
+
logger.info("Début de la collecte des données GitHub...")
|
| 488 |
+
base_url = "https://api.github.com"
|
| 489 |
+
headers = {"Accept": "application/vnd.github.v3+json"}
|
| 490 |
+
if config.USE_API_KEYS:
|
| 491 |
+
token = os.getenv('GITHUB_API_TOKEN')
|
| 492 |
+
headers["Authorization"] = f"token {token}"
|
| 493 |
+
|
| 494 |
+
search_queries = queries.split('\n') if queries else ["topic:devsecops", "topic:security"]
|
| 495 |
+
|
| 496 |
+
for query in search_queries:
|
| 497 |
+
logger.info(f"Recherche de repositories pour: {query}")
|
| 498 |
+
search_url = f"{base_url}/search/repositories"
|
| 499 |
+
params = {"q": query, "sort": "stars", "per_page": 10}
|
| 500 |
+
response = make_request(search_url, headers=headers, params=params)
|
| 501 |
+
if not response:
|
| 502 |
+
continue
|
| 503 |
+
|
| 504 |
+
data = response.json()
|
| 505 |
+
for repo in data.get("items", []):
|
| 506 |
+
repo_name = repo["full_name"].replace("/", "_")
|
| 507 |
+
logger.info(f"Traitement du repository: {repo['full_name']}")
|
| 508 |
+
|
| 509 |
+
issues_url = f"{base_url}/repos/{repo['full_name']}/issues"
|
| 510 |
+
issues_params = {"state": "closed", "labels": "security,bug,vulnerability", "per_page": 10}
|
| 511 |
+
issues_response = make_request(issues_url, headers=headers, params=issues_params)
|
| 512 |
+
|
| 513 |
+
if issues_response:
|
| 514 |
+
issues_data = issues_response.json()
|
| 515 |
+
for issue in issues_data:
|
| 516 |
+
if "pull_request" in issue: continue
|
| 517 |
+
question = issue.get("title", "")
|
| 518 |
+
body = clean_html(issue.get("body", ""))
|
| 519 |
+
if not question or not body or len(body) < 50: continue
|
| 520 |
+
|
| 521 |
+
comments_url = issue.get("comments_url")
|
| 522 |
+
comments_response = make_request(comments_url, headers=headers)
|
| 523 |
+
answer_parts = []
|
| 524 |
+
if comments_response:
|
| 525 |
+
comments_data = comments_response.json()
|
| 526 |
+
for comment in comments_data:
|
| 527 |
+
comment_body = clean_html(comment.get("body", ""))
|
| 528 |
+
if comment_body: answer_parts.append(comment_body)
|
| 529 |
+
|
| 530 |
+
if answer_parts:
|
| 531 |
+
answer = "\n\n".join(answer_parts)
|
| 532 |
+
save_qa_pair(
|
| 533 |
+
question=f"{question}: {body}", answer=answer, category="devsecops",
|
| 534 |
+
subcategory="github", source=f"github_{repo_name}"
|
| 535 |
+
)
|
| 536 |
+
time.sleep(random.uniform(1, 3))
|
| 537 |
+
logger.info("Collecte des données GitHub terminée.")
|
| 538 |
+
|
| 539 |
+
def collect_huggingface_data(queries):
|
| 540 |
+
logger.info("Début de la collecte des données Hugging Face...")
|
| 541 |
+
base_url = "https://huggingface.co/api"
|
| 542 |
+
headers = {"Accept": "application/json"}
|
| 543 |
+
if config.USE_API_KEYS:
|
| 544 |
+
token = os.getenv('HUGGINGFACE_API_TOKEN')
|
| 545 |
+
headers["Authorization"] = f"Bearer {token}"
|
| 546 |
+
|
| 547 |
+
search_queries = queries.split('\n') if queries else ["security", "devsecops"]
|
| 548 |
+
for query in search_queries:
|
| 549 |
+
logger.info(f"Recherche de datasets pour: {query}")
|
| 550 |
+
search_url = f"{base_url}/datasets"
|
| 551 |
+
params = {"search": query, "limit": 10}
|
| 552 |
+
response = make_request(search_url, headers=headers, params=params)
|
| 553 |
+
if not response: continue
|
| 554 |
+
|
| 555 |
+
data = response.json()
|
| 556 |
+
for dataset in data:
|
| 557 |
+
dataset_id = dataset["id"].replace("/", "_")
|
| 558 |
+
logger.info(f"Traitement du dataset: {dataset['id']}")
|
| 559 |
+
dataset_url = f"{base_url}/datasets/{dataset['id']}"
|
| 560 |
+
dataset_response = make_request(dataset_url, headers=headers)
|
| 561 |
+
|
| 562 |
+
if dataset_response:
|
| 563 |
+
dataset_data = dataset_response.json()
|
| 564 |
+
description = clean_html(dataset_data.get("description", ""))
|
| 565 |
+
if not description or len(description) < 100: continue
|
| 566 |
+
tags = dataset_data.get("tags", [])
|
| 567 |
+
tags_text = ", ".join(tags) if tags else "No tags"
|
| 568 |
+
answer = f"Dataset: {dataset_data.get('id', '')}\nDownloads: {dataset_data.get('downloads', 0)}\nTags: {tags_text}\n\n{description}"
|
| 569 |
+
|
| 570 |
+
save_qa_pair(
|
| 571 |
+
question=f"What is the {dataset_data.get('id', '')} dataset about?", answer=answer,
|
| 572 |
+
category="security", subcategory="dataset", source=f"huggingface_{dataset_id}", tags=tags
|
| 573 |
+
)
|
| 574 |
+
time.sleep(random.uniform(1, 3))
|
| 575 |
+
logger.info("Collecte des données Hugging Face terminée.")
|
| 576 |
+
|
| 577 |
+
def collect_nvd_data():
|
| 578 |
+
logger.info("Début de la collecte des données NVD...")
|
| 579 |
+
base_url = "https://services.nvd.nist.gov/rest/json/cves/2.0"
|
| 580 |
+
headers = {"Accept": "application/json"}
|
| 581 |
+
if config.USE_API_KEYS:
|
| 582 |
+
key = os.getenv('NVD_API_KEY')
|
| 583 |
+
headers["apiKey"] = key
|
| 584 |
+
|
| 585 |
+
params = {"resultsPerPage": 50}
|
| 586 |
+
response = make_request(base_url, headers=headers, params=params)
|
| 587 |
+
if not response:
|
| 588 |
+
logger.warning("Impossible de récupérer les données du NVD.")
|
| 589 |
+
return
|
| 590 |
+
|
| 591 |
+
data = response.json()
|
| 592 |
+
vulnerabilities = data.get("vulnerabilities", [])
|
| 593 |
+
logger.info(f"Traitement de {len(vulnerabilities)} vulnérabilités...")
|
| 594 |
+
|
| 595 |
+
for vuln in vulnerabilities:
|
| 596 |
+
cve_data = vuln.get("cve", {})
|
| 597 |
+
cve_id = cve_data.get("id", "")
|
| 598 |
+
descriptions = cve_data.get("descriptions", [])
|
| 599 |
+
description = next((desc.get("value", "") for desc in descriptions if desc.get("lang") == "en"), "")
|
| 600 |
+
if not description or len(description) < 50: continue
|
| 601 |
+
|
| 602 |
+
cvss_v3 = cve_data.get("metrics", {}).get("cvssMetricV31", [{}])[0].get("cvssData", {})
|
| 603 |
+
severity = cvss_v3.get("baseSeverity", "UNKNOWN")
|
| 604 |
+
score = cvss_v3.get("baseScore", 0)
|
| 605 |
+
references = [ref.get("url", "") for ref in cve_data.get("references", [])]
|
| 606 |
+
|
| 607 |
+
answer = f"CVE ID: {cve_id}\nSeverity: {severity}\nCVSS Score: {score}\nReferences: {', '.join(references[:5])}\n\nDescription: {description}"
|
| 608 |
+
|
| 609 |
+
save_qa_pair(
|
| 610 |
+
question=f"What is the vulnerability {cve_id}?", answer=answer,
|
| 611 |
+
category="security", subcategory="vulnerability", source=f"nvd_{cve_id}"
|
| 612 |
+
)
|
| 613 |
+
logger.info("Collecte des données NVD terminée.")
|
| 614 |
+
|
| 615 |
+
def collect_stack_exchange_data(queries):
|
| 616 |
+
logger.info("Début de la collecte des données Stack Exchange...")
|
| 617 |
+
base_url = "https://api.stackexchange.com/2.3"
|
| 618 |
+
params_base = {"pagesize": 10, "order": "desc", "sort": "votes", "filter": "withbody"}
|
| 619 |
+
if config.USE_API_KEYS:
|
| 620 |
+
key = os.getenv('STACK_EXCHANGE_API_KEY')
|
| 621 |
+
params_base["key"] = key
|
| 622 |
+
|
| 623 |
+
sites = [
|
| 624 |
+
{"site": "security", "category": "security", "subcategory": "security"},
|
| 625 |
+
{"site": "devops", "category": "devsecops", "subcategory": "devops"}
|
| 626 |
+
]
|
| 627 |
+
|
| 628 |
+
tags_by_site = {
|
| 629 |
+
"security": ["security", "vulnerability"],
|
| 630 |
+
"devops": ["devops", "ci-cd"]
|
| 631 |
+
}
|
| 632 |
+
|
| 633 |
+
for site_config in sites:
|
| 634 |
+
site = site_config["site"]
|
| 635 |
+
category = site_config["category"]
|
| 636 |
+
subcategory = site_config["subcategory"]
|
| 637 |
+
logger.info(f"Collecte des données du site: {site}")
|
| 638 |
+
tags = tags_by_site.get(site, []) + (queries.split('\n') if queries else [])
|
| 639 |
+
|
| 640 |
+
for tag in list(set(tags)):
|
| 641 |
+
logger.info(f"Recherche de questions avec le tag: {tag}")
|
| 642 |
+
questions_url = f"{base_url}/questions"
|
| 643 |
+
params = {**params_base, "site": site, "tagged": tag}
|
| 644 |
+
|
| 645 |
+
response = make_request(questions_url, params=params)
|
| 646 |
+
if not response: continue
|
| 647 |
+
|
| 648 |
+
questions_data = response.json()
|
| 649 |
+
for question in questions_data.get("items", []):
|
| 650 |
+
question_id = question.get("question_id")
|
| 651 |
+
title = question.get("title", "")
|
| 652 |
+
body = clean_html(question.get("body", ""))
|
| 653 |
+
if not body or len(body) < 50: continue
|
| 654 |
+
|
| 655 |
+
answers_url = f"{base_url}/questions/{question_id}/answers"
|
| 656 |
+
answers_params = {**params_base, "site": site}
|
| 657 |
+
answers_response = make_request(answers_url, params=answers_params)
|
| 658 |
+
answer_body = ""
|
| 659 |
+
if answers_response and answers_response.json().get("items"):
|
| 660 |
+
answer_body = clean_html(answers_response.json()["items"][0].get("body", ""))
|
| 661 |
+
|
| 662 |
+
if answer_body:
|
| 663 |
+
save_qa_pair(
|
| 664 |
+
question=title, answer=answer_body, category=category,
|
| 665 |
+
subcategory=subcategory, source=f"{site}_{question_id}", tags=question.get("tags", [])
|
| 666 |
+
)
|
| 667 |
+
time.sleep(random.uniform(1, 3))
|
| 668 |
+
logger.info("Collecte des données Stack Exchange terminée.")
|
| 669 |
+
|
| 670 |
+
def run_data_collection(sources, queries):
|
| 671 |
+
st.session_state.bot_status = "En cours d'exécution"
|
| 672 |
+
st.session_state.logs = []
|
| 673 |
+
|
| 674 |
+
check_api_keys()
|
| 675 |
+
|
| 676 |
+
progress_bar = st.progress(0)
|
| 677 |
+
status_text = st.empty()
|
| 678 |
+
|
| 679 |
+
enabled_sources = [s for s, enabled in sources.items() if enabled]
|
| 680 |
+
total_sources = len(enabled_sources)
|
| 681 |
+
completed_sources = 0
|
| 682 |
+
|
| 683 |
+
for source_name in enabled_sources:
|
| 684 |
+
status_text.text(f"Collecte des données de {source_name}...")
|
| 685 |
+
try:
|
| 686 |
+
if source_name == "Kaggle":
|
| 687 |
+
collect_kaggle_data(queries.get("Kaggle", ""))
|
| 688 |
+
elif source_name == "GitHub":
|
| 689 |
+
collect_github_data(queries.get("GitHub", ""))
|
| 690 |
+
elif source_name == "Hugging Face":
|
| 691 |
+
collect_huggingface_data(queries.get("Hugging Face", ""))
|
| 692 |
+
elif source_name == "NVD":
|
| 693 |
+
collect_nvd_data()
|
| 694 |
+
elif source_name == "Stack Exchange":
|
| 695 |
+
collect_stack_exchange_data(queries.get("Stack Exchange", ""))
|
| 696 |
+
except Exception as e:
|
| 697 |
+
logger.error(f"Erreur fatale lors de la collecte de {source_name}: {str(e)}")
|
| 698 |
+
|
| 699 |
+
completed_sources += 1
|
| 700 |
+
progress_bar.progress(completed_sources / total_sources)
|
| 701 |
+
|
| 702 |
+
st.session_state.bot_status = "Terminé"
|
| 703 |
+
status_text.text(f"Collecte terminée. Total de paires Q/R sauvegardées: {st.session_state.total_qa_pairs}")
|
| 704 |
+
|
| 705 |
+
def create_visualizations():
|
| 706 |
+
if not st.session_state.qa_data:
|
| 707 |
+
st.info("Aucune donnée à visualiser. Lancez d'abord la collecte de données.")
|
| 708 |
+
return
|
| 709 |
+
|
| 710 |
+
df = pd.DataFrame(st.session_state.qa_data)
|
| 711 |
+
|
| 712 |
+
st.subheader("Répartition des données par catégorie")
|
| 713 |
+
category_counts = df['category'].value_counts()
|
| 714 |
+
fig1 = px.pie(values=category_counts.values, names=category_counts.index, title="Répartition par catégorie")
|
| 715 |
+
st.plotly_chart(fig1, use_container_width=True)
|
| 716 |
+
|
| 717 |
+
st.subheader("Répartition des données par sous-catégorie")
|
| 718 |
+
subcategory_counts = df['subcategory'].value_counts().head(10)
|
| 719 |
+
fig2 = px.bar(x=subcategory_counts.values, y=subcategory_counts.index, orientation='h',
|
| 720 |
+
title="Top 10 des sous-catégories", labels={'x': 'Nombre de paires Q/R', 'y': 'Sous-catégorie'})
|
| 721 |
+
st.plotly_chart(fig2, use_container_width=True)
|
| 722 |
+
|
| 723 |
+
st.subheader("Répartition des données par source")
|
| 724 |
+
source_counts = df['source'].value_counts().head(10)
|
| 725 |
+
fig3 = px.bar(x=source_counts.values, y=source_counts.index, orientation='h',
|
| 726 |
+
title="Top 10 des sources", labels={'x': 'Nombre de paires Q/R', 'y': 'Source'})
|
| 727 |
+
st.plotly_chart(fig3, use_container_width=True)
|
| 728 |
+
|
| 729 |
+
st.subheader("Tags les plus fréquents")
|
| 730 |
+
all_tags = [tag for tags_list in df['tags'] for tag in tags_list]
|
| 731 |
+
if all_tags:
|
| 732 |
+
tag_counts = pd.Series(all_tags).value_counts().head(15)
|
| 733 |
+
fig5 = px.bar(x=tag_counts.values, y=tag_counts.index, orientation='h',
|
| 734 |
+
title="Top 15 des tags", labels={'x': 'Fréquence', 'y': 'Tag'})
|
| 735 |
+
st.plotly_chart(fig5, use_container_width=True)
|
| 736 |
+
|
| 737 |
+
st.subheader("Signatures d'attaques les plus fréquentes")
|
| 738 |
+
all_signatures = [sig for sigs_list in df['attack_signatures'] for sig in sigs_list]
|
| 739 |
+
if all_signatures:
|
| 740 |
+
signature_counts = pd.Series(all_signatures).value_counts().head(15)
|
| 741 |
+
fig6 = px.bar(x=signature_counts.values, y=signature_counts.index, orientation='h',
|
| 742 |
+
title="Top 15 des signatures d'attaques", labels={'x': 'Fréquence', 'y': 'Signature'})
|
| 743 |
+
st.plotly_chart(fig6, use_container_width=True)
|
| 744 |
+
|
| 745 |
+
def main():
|
| 746 |
+
create_initial_setup()
|
| 747 |
+
|
| 748 |
+
st.title("🤖 DevSecOps Data Bot")
|
| 749 |
+
st.markdown("---")
|
| 750 |
+
|
| 751 |
+
col1, col2, col3 = st.columns(3)
|
| 752 |
+
with col1:
|
| 753 |
+
st.metric("Statut du bot", st.session_state.bot_status)
|
| 754 |
+
with col2:
|
| 755 |
+
check_server_status() # Met à jour le statut
|
| 756 |
+
st.metric("Statut du serveur llama.cpp", st.session_state.server_status)
|
| 757 |
+
with col3:
|
| 758 |
+
st.metric("Paires Q/R collectées", st.session_state.total_qa_pairs)
|
| 759 |
+
|
| 760 |
+
st.markdown("---")
|
| 761 |
+
|
| 762 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Réglages", "Collecte", "Traitement IA", "Résultats"])
|
| 763 |
+
|
| 764 |
+
with tab1:
|
| 765 |
+
st.header("Réglages")
|
| 766 |
+
subtab1, subtab2, subtab3 = st.tabs(["Clés d'API", "Serveur llama.cpp", "Performance"])
|
| 767 |
+
|
| 768 |
+
with subtab1:
|
| 769 |
+
st.subheader("Clés d'API")
|
| 770 |
+
github_token = st.text_input("GitHub API Token", value=os.getenv('GITHUB_API_TOKEN', ''), type="password")
|
| 771 |
+
huggingface_token = st.text_input("Hugging Face API Token", value=os.getenv('HUGGINGFACE_API_TOKEN', ''), type="password")
|
| 772 |
+
nvd_api_key = st.text_input("NVD API Key", value=os.getenv('NVD_API_KEY', ''), type="password")
|
| 773 |
+
stack_exchange_key = st.text_input("Stack Exchange API Key", value=os.getenv('STACK_EXCHANGE_API_KEY', ''), type="password")
|
| 774 |
+
|
| 775 |
+
if st.button("Sauvegarder les clés d'API"):
|
| 776 |
+
with open(config.env_path, 'w') as f:
|
| 777 |
+
f.write(f"GITHUB_API_TOKEN={github_token}\n")
|
| 778 |
+
f.write(f"HUGGINGFACE_API_TOKEN={huggingface_token}\n")
|
| 779 |
+
f.write(f"NVD_API_KEY={nvd_api_key}\n")
|
| 780 |
+
f.write(f"STACK_EXCHANGE_API_KEY={stack_exchange_key}\n")
|
| 781 |
+
f.write(f"LLM_SERVER_URL={os.getenv('LLM_SERVER_URL', 'http://localhost:8080/completion')}\n")
|
| 782 |
+
|
| 783 |
+
config.load_dotenv(dotenv_path=config.env_path)
|
| 784 |
+
check_api_keys()
|
| 785 |
+
st.success("Clés d'API sauvegardées!")
|
| 786 |
+
|
| 787 |
+
with subtab2:
|
| 788 |
+
st.subheader("Serveur llama.cpp")
|
| 789 |
+
|
| 790 |
+
col1, col2 = st.columns(2)
|
| 791 |
+
with col1:
|
| 792 |
+
if st.button("Démarrer le serveur"):
|
| 793 |
+
start_llm_server()
|
| 794 |
+
with col2:
|
| 795 |
+
if st.button("Arrêter le serveur"):
|
| 796 |
+
stop_llm_server()
|
| 797 |
+
|
| 798 |
+
st.markdown(f"**Statut actuel:** `{st.session_state.server_status}`")
|
| 799 |
+
|
| 800 |
+
llm_url = st.text_input("URL du serveur LLM", value=config.LLM_SERVER_URL)
|
| 801 |
+
if st.button("Mettre à jour l'URL"):
|
| 802 |
+
config.LLM_SERVER_URL = llm_url
|
| 803 |
+
os.environ['LLM_SERVER_URL'] = llm_url
|
| 804 |
+
st.success("URL mise à jour!")
|
| 805 |
+
|
| 806 |
+
with subtab3:
|
| 807 |
+
st.subheader("Paramètres de performance")
|
| 808 |
+
max_requests = st.number_input("Nombre de requêtes avant pause", value=config.MAX_REQUESTS_BEFORE_PAUSE)
|
| 809 |
+
min_pause = st.number_input("Pause minimum (secondes)", value=config.MIN_PAUSE)
|
| 810 |
+
max_pause = st.number_input("Pause maximum (secondes)", value=config.MAX_PAUSE)
|
| 811 |
+
|
| 812 |
+
if st.button("Sauvegarder les paramètres"):
|
| 813 |
+
config.MAX_REQUESTS_BEFORE_PAUSE = max_requests
|
| 814 |
+
config.MIN_PAUSE = min_pause
|
| 815 |
+
config.MAX_PAUSE = max_pause
|
| 816 |
+
st.success("Paramètres sauvegardés!")
|
| 817 |
+
|
| 818 |
+
with tab2:
|
| 819 |
+
st.header("Collecte de données")
|
| 820 |
+
|
| 821 |
+
sources = {
|
| 822 |
+
"Kaggle": st.checkbox("Kaggle", value=True),
|
| 823 |
+
"GitHub": st.checkbox("GitHub", value=True),
|
| 824 |
+
"Hugging Face": st.checkbox("Hugging Face", value=True),
|
| 825 |
+
"NVD": st.checkbox("NVD", value=True),
|
| 826 |
+
"Stack Exchange": st.checkbox("Stack Exchange", value=True)
|
| 827 |
+
}
|
| 828 |
+
|
| 829 |
+
st.subheader("Requêtes de recherche")
|
| 830 |
+
queries = {
|
| 831 |
+
"Kaggle": st.text_area("Requêtes Kaggle (une par ligne)", value="cybersecurity\nvulnerability"),
|
| 832 |
+
"GitHub": st.text_area("Requêtes GitHub (une par ligne)", value="topic:devsecops\ntopic:security"),
|
| 833 |
+
"Hugging Face": st.text_area("Requêtes Hugging Face (une par ligne)", value="security\ndevsecops"),
|
| 834 |
+
"Stack Exchange": st.text_area("Requêtes Stack Exchange (une par ligne)", value="security\nvulnerability")
|
| 835 |
+
}
|
| 836 |
+
|
| 837 |
+
if st.button("Lancer la collecte"):
|
| 838 |
+
run_data_collection(sources, queries)
|
| 839 |
+
|
| 840 |
+
with tab3:
|
| 841 |
+
st.header("Traitement IA")
|
| 842 |
+
enable_enrichment = st.checkbox("Activer l'enrichissement IA", value=st.session_state.enable_enrichment)
|
| 843 |
+
st.session_state.enable_enrichment = enable_enrichment
|
| 844 |
+
|
| 845 |
+
if enable_enrichment:
|
| 846 |
+
st.session_state.min_relevance = st.slider("Score de pertinence minimum", 0, 100, st.session_state.min_relevance)
|
| 847 |
+
st.session_state.num_queries = st.number_input("Nombre de nouvelles requêtes", value=st.session_state.num_queries)
|
| 848 |
+
|
| 849 |
+
st.subheader("Paramètres du LLM")
|
| 850 |
+
st.session_state.temperature = st.slider("Température", 0.0, 1.0, 0.7)
|
| 851 |
+
st.session_state.n_predict = st.number_input("Nombre de tokens de prédiction", value=512)
|
| 852 |
+
|
| 853 |
+
prompts = load_prompts()
|
| 854 |
+
st.subheader("Prompts")
|
| 855 |
+
for task, task_data in prompts.items():
|
| 856 |
+
st.write(f"**{task}**")
|
| 857 |
+
st.text_area(f"System Prompt - {task}", value=task_data.get("system", ""), height=100, key=f"system_{task}")
|
| 858 |
+
st.text_area(f"Prompt Template - {task}", value=task_data.get("prompt_template", ""), height=150, key=f"template_{task}")
|
| 859 |
+
|
| 860 |
+
if st.button("Sauvegarder les prompts"):
|
| 861 |
+
updated_prompts = {
|
| 862 |
+
task: {
|
| 863 |
+
"system": st.session_state[f"system_{task}"],
|
| 864 |
+
"prompt_template": st.session_state[f"template_{task}"]
|
| 865 |
+
} for task in prompts
|
| 866 |
+
}
|
| 867 |
+
with open("config/prompts.json", 'w') as f:
|
| 868 |
+
json.dump(updated_prompts, f, indent=2)
|
| 869 |
+
global PROMPTS
|
| 870 |
+
PROMPTS = load_prompts()
|
| 871 |
+
st.success("Prompts sauvegardés!")
|
| 872 |
+
|
| 873 |
+
with tab4:
|
| 874 |
+
st.header("Résultats")
|
| 875 |
+
subtab1, subtab2, subtab3 = st.tabs(["Visualisations", "Données", "Logs"])
|
| 876 |
+
|
| 877 |
+
with subtab1:
|
| 878 |
+
create_visualizations()
|
| 879 |
+
with subtab2:
|
| 880 |
+
st.subheader("Aperçu des données")
|
| 881 |
+
if st.session_state.qa_data:
|
| 882 |
+
df = pd.DataFrame(st.session_state.qa_data)
|
| 883 |
+
st.dataframe(df.tail(10))
|
| 884 |
+
|
| 885 |
+
st.subheader("Téléchargement des données")
|
| 886 |
+
col1, col2 = st.columns(2)
|
| 887 |
+
with col1:
|
| 888 |
+
json_data = json.dumps(st.session_state.qa_data, indent=2)
|
| 889 |
+
st.download_button(label="Télécharger JSON", data=json_data, file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json", mime="application/json")
|
| 890 |
+
with col2:
|
| 891 |
+
csv_data = df.to_csv(index=False)
|
| 892 |
+
st.download_button(label="Télécharger CSV", data=csv_data, file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv", mime="text/csv")
|
| 893 |
+
else:
|
| 894 |
+
st.info("Aucune donnée à afficher. Lancez d'abord la collecte.")
|
| 895 |
+
with subtab3:
|
| 896 |
+
st.subheader("Logs d'exécution")
|
| 897 |
+
for log in st.session_state.logs:
|
| 898 |
+
st.text(log)
|
| 899 |
+
|
| 900 |
+
if __name__ == "__main__":
|
| 901 |
+
main()
|
build.sh
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Fonction pour afficher des messages informatifs en vert
|
| 4 |
+
info() {
|
| 5 |
+
echo -e "\e[32m[INFO]\e[0m $1"
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
# Fonction pour afficher des messages d'erreur en rouge
|
| 9 |
+
error() {
|
| 10 |
+
echo -e "\e[31m[ERREUR]\e[0m $1"
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
# --- Début du script ---
|
| 14 |
+
|
| 15 |
+
# Étape 1: Vérification et compilation de llama.cpp
|
| 16 |
+
info "Étape 1: Vérification et compilation de llama.cpp..."
|
| 17 |
+
if [ ! -d "llama.cpp/build/bin" ]; then
|
| 18 |
+
info "Dossier 'llama.cpp/build/bin' introuvable. Démarrage de la compilation."
|
| 19 |
+
|
| 20 |
+
if [ ! -d "llama.cpp" ]; then
|
| 21 |
+
info "Clonage du dépôt llama.cpp..."
|
| 22 |
+
git clone https://github.com/ggerganov/llama.cpp.git || { error "Échec du clonage."; exit 1; }
|
| 23 |
+
fi
|
| 24 |
+
|
| 25 |
+
cd llama.cpp
|
| 26 |
+
info "Lancement de la compilation..."
|
| 27 |
+
mkdir -p build && cd build
|
| 28 |
+
cmake .. -DLLAMA_CURL=1 || { error "Échec de la configuration CMake."; cd ../..; exit 1; }
|
| 29 |
+
cmake --build . --config Release || { error "Échec de la compilation."; cd ../..; exit 1; }
|
| 30 |
+
cd ../..
|
| 31 |
+
info "Compilation de llama.cpp terminée avec succès."
|
| 32 |
+
else
|
| 33 |
+
info "llama.cpp est déjà compilé. Ignoré."
|
| 34 |
+
fi
|
| 35 |
+
|
| 36 |
+
# Étape 2: Vérification et téléchargement du modèle GGUF
|
| 37 |
+
info "Étape 2: Vérification et téléchargement du modèle GGUF..."
|
| 38 |
+
MODEL_PATH="models/qwen2.5-coder-1.5b-q8_0.gguf"
|
| 39 |
+
if [ ! -f "$MODEL_PATH" ]; then
|
| 40 |
+
info "Le modèle $MODEL_PATH est introuvable. Début du téléchargement..."
|
| 41 |
+
mkdir -p models
|
| 42 |
+
wget https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF/resolve/main/qwen2.5-1.5b-instruct-q8_0.gguf -O "$MODEL_PATH" || { error "Échec du téléchargement du modèle."; exit 1; }
|
| 43 |
+
info "Téléchargement du modèle terminé."
|
| 44 |
+
else
|
| 45 |
+
info "Le modèle GGUF est déjà présent. Ignoré."
|
| 46 |
+
fi
|
| 47 |
+
|
| 48 |
+
# Étape 3: Création du script de démarrage du serveur
|
| 49 |
+
info "Étape 3: Création du script de démarrage du serveur..."
|
| 50 |
+
mkdir -p server
|
| 51 |
+
START_SCRIPT="server/start_server.sh"
|
| 52 |
+
echo '#!/bin/bash' > "$START_SCRIPT"
|
| 53 |
+
echo "MODEL_PATH=\"../$MODEL_PATH\"" >> "$START_SCRIPT"
|
| 54 |
+
echo 'if [ ! -f "$MODEL_PATH" ]; then' >> "$START_SCRIPT"
|
| 55 |
+
echo ' echo "Le modèle GGUF est introuvable à: $MODEL_PATH"' >> "$START_SCRIPT"
|
| 56 |
+
echo ' exit 1' >> "$START_SCRIPT"
|
| 57 |
+
echo 'fi' >> "$START_SCRIPT"
|
| 58 |
+
echo '"../llama.cpp/build/bin/llama-server" \\' >> "$START_SCRIPT"
|
| 59 |
+
echo " -m \"\$MODEL_PATH\" \\" >> "$START_SCRIPT"
|
| 60 |
+
echo " --port 8080 \\" >> "$START_SCRIPT"
|
| 61 |
+
echo " --host 0.0.0.0 \\" >> "$START_SCRIPT"
|
| 62 |
+
echo " -c 4096 \\" >> "$START_SCRIPT"
|
| 63 |
+
echo " -ngl 999 \\" >> "$START_SCRIPT"
|
| 64 |
+
echo " --threads 8 \\" >> "$START_SCRIPT"
|
| 65 |
+
echo ' > "logs/llama_server.log" 2>&1 &' >> "$START_SCRIPT"
|
| 66 |
+
echo 'echo $! > "server/server.pid"' >> "$START_SCRIPT"
|
| 67 |
+
chmod +x "$START_SCRIPT"
|
| 68 |
+
info "Script de démarrage du serveur créé."
|
| 69 |
+
|
| 70 |
+
# Étape 4: Création du script d'arrêt du serveur
|
| 71 |
+
info "Étape 4: Création du script d'arrêt du serveur..."
|
| 72 |
+
STOP_SCRIPT="server/stop_server.sh"
|
| 73 |
+
echo '#!/bin/bash' > "$STOP_SCRIPT"
|
| 74 |
+
echo 'PID_FILE="server/server.pid"' >> "$STOP_SCRIPT"
|
| 75 |
+
echo 'if [ -f "$PID_FILE" ]; then' >> "$STOP_SCRIPT"
|
| 76 |
+
echo ' PID=$(cat "$PID_FILE")' >> "$STOP_SCRIPT"
|
| 77 |
+
echo ' kill $PID' >> "$STOP_SCRIPT"
|
| 78 |
+
echo ' rm "$PID_FILE"' >> "$STOP_SCRIPT"
|
| 79 |
+
echo ' echo "Serveur llama.cpp arrêté."' >> "$STOP_SCRIPT"
|
| 80 |
+
echo 'else' >> "$STOP_SCRIPT"
|
| 81 |
+
echo ' echo "Aucun PID de serveur trouvé."' >> "$STOP_SCRIPT"
|
| 82 |
+
echo 'fi' >> "$STOP_SCRIPT"
|
| 83 |
+
chmod +x "$STOP_SCRIPT"
|
| 84 |
+
info "Script d'arrêt du serveur créé."
|
| 85 |
+
|
| 86 |
+
# Étape 5: Lancement de l'application Streamlit
|
| 87 |
+
info "Étape 5: Lancement de l'application Streamlit..."
|
| 88 |
+
streamlit run app.py
|
build_old.sh
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Fonction pour afficher des messages informatifs en vert
|
| 4 |
+
info() {
|
| 5 |
+
echo -e "\e[32m[INFO]\e[0m $1"
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
# Fonction pour afficher des messages d'erreur en rouge
|
| 9 |
+
error() {
|
| 10 |
+
echo -e "\e[31m[ERREUR]\e[0m $1"
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
# --- Début du script ---
|
| 14 |
+
|
| 15 |
+
info "Vérification de l'existence du dossier 'llama.cpp'..."
|
| 16 |
+
|
| 17 |
+
# Vérifie si le dossier 'llama.cpp' n'existe pas
|
| 18 |
+
if [ ! -d "llama.cpp" ]; then
|
| 19 |
+
info "Le dossier 'llama.cpp' n'existe pas. Téléchargement en cours..."
|
| 20 |
+
git clone https://github.com/ggerganov/llama.cpp.git
|
| 21 |
+
|
| 22 |
+
# Vérifie si le clonage a réussi
|
| 23 |
+
if [ $? -ne 0 ]; then
|
| 24 |
+
error "Le clonage a échoué. Veuillez vérifier votre connexion Internet ou l'URL du dépôt."
|
| 25 |
+
exit 1
|
| 26 |
+
fi
|
| 27 |
+
|
| 28 |
+
# Entre dans le dossier cloné
|
| 29 |
+
cd llama.cpp
|
| 30 |
+
info "Démarrage de la compilation de llama.cpp..."
|
| 31 |
+
|
| 32 |
+
# Crée le dossier de compilation et s'y déplace
|
| 33 |
+
mkdir -p build && cd build
|
| 34 |
+
|
| 35 |
+
# Exécute la configuration avec CMake, en activant CURL
|
| 36 |
+
info "Configuration avec CMake..."
|
| 37 |
+
cmake .. -DLLAMA_CURL=1
|
| 38 |
+
|
| 39 |
+
# Vérifie si la configuration a réussi
|
| 40 |
+
if [ $? -ne 0 ]; then
|
| 41 |
+
error "La configuration CMake a échoué. Assurez-vous que CMake est installé."
|
| 42 |
+
cd ../..
|
| 43 |
+
exit 1
|
| 44 |
+
fi
|
| 45 |
+
|
| 46 |
+
# Lance la compilation
|
| 47 |
+
info "Lancement de la compilation..."
|
| 48 |
+
cmake --build . --config Release
|
| 49 |
+
|
| 50 |
+
# Vérifie si la compilation a réussi
|
| 51 |
+
if [ $? -ne 0 ]; then
|
| 52 |
+
error "La compilation a échoué. Veuillez vérifier les dépendances (make, g++, etc.)."
|
| 53 |
+
cd ../..
|
| 54 |
+
exit 1
|
| 55 |
+
fi
|
| 56 |
+
|
| 57 |
+
# Retourne au répertoire initial
|
| 58 |
+
cd ../..
|
| 59 |
+
info "Compilation terminée avec succès !"
|
| 60 |
+
else
|
| 61 |
+
info "Le dossier 'llama.cpp' existe déjà. Ignorons le téléchargement et la compilation."
|
| 62 |
+
fi
|
| 63 |
+
|
| 64 |
+
info "Script terminé."
|
config/__pycache__/app_config.cpython-312.pyc
ADDED
|
Binary file (2.95 kB). View file
|
|
|
config/app_config.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app_config.py
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
|
| 7 |
+
def setup_dotenv():
|
| 8 |
+
env_dir = Path("config")
|
| 9 |
+
env_dir.mkdir(exist_ok=True)
|
| 10 |
+
env_path = env_dir / ".env"
|
| 11 |
+
if not env_path.exists():
|
| 12 |
+
with open(env_path, 'w') as f:
|
| 13 |
+
f.write("# Configuration du serveur LLM et des clés API\n")
|
| 14 |
+
f.write("LLM_SERVER_URL=http://localhost:8080/completion\n")
|
| 15 |
+
f.write("GITHUB_API_TOKEN=\n")
|
| 16 |
+
f.write("HUGGINGFACE_API_TOKEN=\n")
|
| 17 |
+
f.write("NVD_API_KEY=\n")
|
| 18 |
+
f.write("STACK_EXCHANGE_API_KEY=\n")
|
| 19 |
+
load_dotenv(dotenv_path=env_path)
|
| 20 |
+
|
| 21 |
+
setup_dotenv()
|
| 22 |
+
|
| 23 |
+
LLM_SERVER_URL = os.getenv('LLM_SERVER_URL', 'http://localhost:8080/completion')
|
| 24 |
+
|
| 25 |
+
def init_session_state():
|
| 26 |
+
if 'bot_status' not in st.session_state:
|
| 27 |
+
st.session_state.bot_status = "Arrêté"
|
| 28 |
+
if 'server_status' not in st.session_state:
|
| 29 |
+
st.session_state.server_status = "Inactif"
|
| 30 |
+
if 'total_qa_pairs' not in st.session_state:
|
| 31 |
+
st.session_state.total_qa_pairs = 0
|
| 32 |
+
if 'logs' not in st.session_state:
|
| 33 |
+
st.session_state.logs = []
|
| 34 |
+
if 'qa_data' not in st.session_state:
|
| 35 |
+
st.session_state.qa_data = []
|
| 36 |
+
if 'enable_enrichment' not in st.session_state:
|
| 37 |
+
st.session_state.enable_enrichment = True
|
| 38 |
+
if 'min_relevance' not in st.session_state:
|
| 39 |
+
st.session_state.min_relevance = 70
|
| 40 |
+
if 'num_queries' not in st.session_state:
|
| 41 |
+
st.session_state.num_queries = 5
|
| 42 |
+
if 'temperature' not in st.session_state:
|
| 43 |
+
st.session_state.temperature = 0.7
|
| 44 |
+
if 'n_predict' not in st.session_state:
|
| 45 |
+
st.session_state.n_predict = 512
|
| 46 |
+
|
| 47 |
+
REQUEST_COUNT = 0
|
| 48 |
+
MAX_REQUESTS_BEFORE_PAUSE = 15
|
| 49 |
+
MIN_PAUSE = 2
|
| 50 |
+
MAX_PAUSE = 5
|
| 51 |
+
USE_API_KEYS = True
|
config/prompts.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"enrich_qa": {
|
| 3 |
+
"system": "Tu es un expert DevSecOps. Am\u00e9liore cette paire question/r\u00e9ponse en y ajoutant des tags, des signatures d'attaques potentielles, et en structurant les informations. R\u00e9ponds uniquement avec un objet JSON.",
|
| 4 |
+
"prompt_template": "Question originale: {question}\nR\u00e9ponse originale: {answer}\nContexte: {context}\n\nFournis une version am\u00e9lior\u00e9e sous forme de JSON:\n{{\n \"question\": \"question am\u00e9lior\u00e9e\",\n \"answer\": \"r\u00e9ponse am\u00e9lior\u00e9e\",\n \"tags\": [\"tag1\", \"tag2\"],\n \"attack_signatures\": [\"signature1\", \"signature2\"]\n}}"
|
| 5 |
+
},
|
| 6 |
+
"analyze_relevance": {
|
| 7 |
+
"system": "Analyse ce contenu et d\u00e9termine s'il est pertinent pour DevSecOps. Si pertinent, extrais les signatures d'attaques connues. R\u00e9ponds uniquement avec un objet JSON.",
|
| 8 |
+
"prompt_template": "Contenu: {content}...\n\nR\u00e9ponds sous forme de JSON:\n{{\n \"relevant\": true,\n \"attack_signatures\": [\"signature1\", \"signature2\"],\n \"security_tags\": [\"tag1\", \"tag2\"],\n \"it_relevance_score\": 0-100\n}}"
|
| 9 |
+
},
|
| 10 |
+
"generate_queries": {
|
| 11 |
+
"system": "Analyse les donn\u00e9es actuelles et g\u00e9n\u00e8re 5 nouvelles requ\u00eates de recherche pour trouver plus de contenu DevSecOps pertinent, en particulier des signatures d'attaques et vuln\u00e9rabilit\u00e9s. R\u00e9ponds uniquement avec un objet JSON.",
|
| 12 |
+
"prompt_template": "Donn\u00e9es actuelles: {current_data}...\n\nR\u00e9ponds sous forme de JSON:\n{{\n \"queries\": [\"query1\", \"query2\", \"query3\", \"query4\", \"query5\"]\n}}"
|
| 13 |
+
}
|
| 14 |
+
}
|
llama.cpp
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 19f4decae0ead52debe56095ba8d693b4f14e4df
|
monitor.sh
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Nom du script de build
|
| 4 |
+
BUILD_SCRIPT="./build.sh"
|
| 5 |
+
|
| 6 |
+
# Dossier de base à vérifier
|
| 7 |
+
BASE_FOLDER="llama.cpp"
|
| 8 |
+
|
| 9 |
+
# Dossier des binaires à vérifier pour s'assurer que la compilation a réussi
|
| 10 |
+
BIN_FOLDER="$BASE_FOLDER/build"
|
| 11 |
+
|
| 12 |
+
# Fonction pour afficher des messages informatifs en vert
|
| 13 |
+
info() {
|
| 14 |
+
echo -e "\e[32m[INFO]\e[0m $1"
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
# Fonction pour afficher des messages d'erreur en rouge
|
| 18 |
+
error() {
|
| 19 |
+
echo -e "\e[31m[ERREUR]\e[0m $1"
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
# Fonction pour afficher des messages d'avertissement en jaune
|
| 23 |
+
warning() {
|
| 24 |
+
echo -e "\e[33m[ATTENTION]\e[0m $1"
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
# Fonction pour nettoyer et relancer le processus
|
| 28 |
+
clean_and_retry() {
|
| 29 |
+
error "Le dossier de compilation est manquant. Nettoyage et relance en cours..."
|
| 30 |
+
rm -rf "$BASE_FOLDER"
|
| 31 |
+
sleep 5 # Attendre quelques secondes avant de relancer
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
# Boucle principale de vérification
|
| 35 |
+
info "Démarrage de la surveillance. Vérification de la présence des binaires de llama.cpp..."
|
| 36 |
+
while [ ! -d "$BIN_FOLDER" ]; do
|
| 37 |
+
|
| 38 |
+
# Vérifie si le dossier de base existe, mais n'a pas été compilé
|
| 39 |
+
if [ -d "$BASE_FOLDER" ]; then
|
| 40 |
+
warning "Le dossier '$BASE_FOLDER' existe, mais le dossier de compilation '$BIN_FOLDER' est manquant."
|
| 41 |
+
warning "Cela peut indiquer un échec de la compilation. Nous allons le supprimer et relancer."
|
| 42 |
+
clean_and_retry
|
| 43 |
+
fi
|
| 44 |
+
|
| 45 |
+
warning "Les binaires sont introuvables. Lancement du script de build ('$BUILD_SCRIPT')..."
|
| 46 |
+
|
| 47 |
+
# Exécute le script de build
|
| 48 |
+
"$BUILD_SCRIPT"
|
| 49 |
+
|
| 50 |
+
# Donne un peu de temps à la commande pour s'exécuter
|
| 51 |
+
sleep 5
|
| 52 |
+
done
|
| 53 |
+
|
| 54 |
+
info "Félicitations ! Les binaires de llama.cpp ont été trouvés avec succès !"
|
| 55 |
+
info "Le processus de téléchargement et de compilation est terminé."
|
requirements.txt
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==5.5.0
|
| 2 |
+
attrs==25.3.0
|
| 3 |
+
beautifulsoup4==4.13.4
|
| 4 |
+
bleach==6.2.0
|
| 5 |
+
blinker==1.9.0
|
| 6 |
+
cachetools==6.1.0
|
| 7 |
+
certifi==2025.8.3
|
| 8 |
+
charset-normalizer==3.4.3
|
| 9 |
+
click==8.2.1
|
| 10 |
+
contourpy==1.3.3
|
| 11 |
+
cycler==0.12.1
|
| 12 |
+
fonttools==4.59.1
|
| 13 |
+
gitdb==4.0.12
|
| 14 |
+
GitPython==3.1.45
|
| 15 |
+
html2text==2025.4.15
|
| 16 |
+
idna==3.10
|
| 17 |
+
Jinja2==3.1.6
|
| 18 |
+
jsonschema==4.25.0
|
| 19 |
+
jsonschema-specifications==2025.4.1
|
| 20 |
+
kaggle==1.7.4.5
|
| 21 |
+
kiwisolver==1.4.9
|
| 22 |
+
lxml==6.0.0
|
| 23 |
+
MarkupSafe==3.0.2
|
| 24 |
+
matplotlib==3.10.5
|
| 25 |
+
narwhals==2.1.2
|
| 26 |
+
numpy==2.3.2
|
| 27 |
+
packaging==25.0
|
| 28 |
+
pandas==2.3.1
|
| 29 |
+
pillow==11.3.0
|
| 30 |
+
plotly==6.3.0
|
| 31 |
+
protobuf==6.32.0
|
| 32 |
+
pyarrow==21.0.0
|
| 33 |
+
pydeck==0.9.1
|
| 34 |
+
pyparsing==3.2.3
|
| 35 |
+
python-dateutil==2.9.0.post0
|
| 36 |
+
python-dotenv==1.1.1
|
| 37 |
+
python-slugify==8.0.4
|
| 38 |
+
pytz==2025.2
|
| 39 |
+
referencing==0.36.2
|
| 40 |
+
requests==2.32.4
|
| 41 |
+
rpds-py==0.27.0
|
| 42 |
+
setuptools==80.9.0
|
| 43 |
+
six==1.17.0
|
| 44 |
+
smmap==5.0.2
|
| 45 |
+
soupsieve==2.7
|
| 46 |
+
streamlit==1.48.1
|
| 47 |
+
tenacity==9.1.2
|
| 48 |
+
text-unidecode==1.3
|
| 49 |
+
toml==0.10.2
|
| 50 |
+
tornado==6.5.2
|
| 51 |
+
tqdm==4.67.1
|
| 52 |
+
typing_extensions==4.14.1
|
| 53 |
+
tzdata==2025.2
|
| 54 |
+
urllib3==2.5.0
|
| 55 |
+
watchdog==6.0.0
|
| 56 |
+
webencodings==0.5.1
|
run.sh
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# --- Couleurs pour l'affichage ---
|
| 4 |
+
RED='\033[0;31m'
|
| 5 |
+
GREEN='\033[0;32m'
|
| 6 |
+
YELLOW='\033[1;33m'
|
| 7 |
+
BLUE='\033[0;34m'
|
| 8 |
+
NC='\033[0m'
|
| 9 |
+
|
| 10 |
+
# --- Fonctions d'affichage ---
|
| 11 |
+
step() { echo -e "${GREEN}[ÉTAPE]${NC} $1"; }
|
| 12 |
+
info() { echo -e "${BLUE}[INFO]${NC} $1"; }
|
| 13 |
+
warning() { echo -e "${YELLOW}[AVERTISSEMENT]${NC} $1"; }
|
| 14 |
+
error() { echo -e "${RED}[ERREUR]${NC} $1"; }
|
| 15 |
+
|
| 16 |
+
# Vérifier si on est root
|
| 17 |
+
if [[ $EUID -eq 0 ]]; then
|
| 18 |
+
error "Ne pas exécuter ce script en tant que root. Veuillez utiliser un utilisateur normal."
|
| 19 |
+
exit 1
|
| 20 |
+
fi
|
| 21 |
+
|
| 22 |
+
# Supprimer l'arborescence et l'environnement existants pour une installation propre
|
| 23 |
+
step "Suppression de l'environnement existant et de l'arborescence..."
|
| 24 |
+
rm -rf data logs config server scripts models .kaggle venv
|
| 25 |
+
info "Nettoyage terminé."
|
| 26 |
+
|
| 27 |
+
# --- Étape 1 : Création de l'arborescence du projet ---
|
| 28 |
+
step "Création de l'arborescence du projet..."
|
| 29 |
+
mkdir -p data/devsecops/qa
|
| 30 |
+
mkdir -p data/security/qa
|
| 31 |
+
mkdir -p data/development/qa
|
| 32 |
+
mkdir -p data/data_analysis/qa
|
| 33 |
+
mkdir -p logs
|
| 34 |
+
mkdir -p config
|
| 35 |
+
mkdir -p server
|
| 36 |
+
mkdir -p scripts
|
| 37 |
+
mkdir -p models
|
| 38 |
+
mkdir -p llama.cpp # Ajout du dossier pour llama.cpp
|
| 39 |
+
mkdir -p .kaggle
|
| 40 |
+
info "Arborescence créée."
|
| 41 |
+
|
| 42 |
+
# --- Étape 2 : Installation des dépendances système ---
|
| 43 |
+
step "Installation des dépendances système (peut nécessiter votre mot de passe)..."
|
| 44 |
+
sudo apt update
|
| 45 |
+
sudo apt install -y python3 python3-pip python3-venv cmake build-essential git aria2
|
| 46 |
+
info "Dépendances système installées."
|
| 47 |
+
|
| 48 |
+
# --- Étape 3 : Création et activation de l'environnement virtuel ---
|
| 49 |
+
step "Création de l'environnement virtuel..."
|
| 50 |
+
python3 -m venv venv
|
| 51 |
+
info "Environnement virtuel créé."
|
| 52 |
+
source venv/bin/activate
|
| 53 |
+
info "Environnement virtuel activé."
|
| 54 |
+
|
| 55 |
+
# --- Étape 4 : Création du fichier requirements.txt et installation des dépendances ---
|
| 56 |
+
step "Génération et installation des dépendances Python..."
|
| 57 |
+
# Note : j'ai ajouté 'python-dotenv' pour gérer les variables d'environnement
|
| 58 |
+
cat << EOF > requirements.txt
|
| 59 |
+
streamlit
|
| 60 |
+
pandas
|
| 61 |
+
plotly
|
| 62 |
+
beautifulsoup4
|
| 63 |
+
html2text
|
| 64 |
+
requests
|
| 65 |
+
kaggle
|
| 66 |
+
python-dotenv
|
| 67 |
+
lxml
|
| 68 |
+
matplotlib
|
| 69 |
+
EOF
|
| 70 |
+
pip install -r requirements.txt
|
| 71 |
+
info "Dépendances Python installées."
|
| 72 |
+
|
| 73 |
+
# --- Étape 5 : Création des fichiers de configuration ---
|
| 74 |
+
step "Création du fichier de configuration 'config/app_config.py'..."
|
| 75 |
+
cat << EOF > config/app_config.py
|
| 76 |
+
# app_config.py
|
| 77 |
+
import os
|
| 78 |
+
from pathlib import Path
|
| 79 |
+
import streamlit as st
|
| 80 |
+
from dotenv import load_dotenv
|
| 81 |
+
|
| 82 |
+
def setup_dotenv():
|
| 83 |
+
env_dir = Path("config")
|
| 84 |
+
env_dir.mkdir(exist_ok=True)
|
| 85 |
+
env_path = env_dir / ".env"
|
| 86 |
+
if not env_path.exists():
|
| 87 |
+
with open(env_path, 'w') as f:
|
| 88 |
+
f.write("# Configuration du serveur LLM et des clés API\n")
|
| 89 |
+
f.write("LLM_SERVER_URL=http://localhost:8080/completion\n")
|
| 90 |
+
f.write("GITHUB_API_TOKEN=\n")
|
| 91 |
+
f.write("HUGGINGFACE_API_TOKEN=\n")
|
| 92 |
+
f.write("NVD_API_KEY=\n")
|
| 93 |
+
f.write("STACK_EXCHANGE_API_KEY=\n")
|
| 94 |
+
load_dotenv(dotenv_path=env_path)
|
| 95 |
+
|
| 96 |
+
setup_dotenv()
|
| 97 |
+
|
| 98 |
+
LLM_SERVER_URL = os.getenv('LLM_SERVER_URL', 'http://localhost:8080/completion')
|
| 99 |
+
|
| 100 |
+
def init_session_state():
|
| 101 |
+
if 'bot_status' not in st.session_state:
|
| 102 |
+
st.session_state.bot_status = "Arrêté"
|
| 103 |
+
if 'server_status' not in st.session_state:
|
| 104 |
+
st.session_state.server_status = "Inactif"
|
| 105 |
+
if 'total_qa_pairs' not in st.session_state:
|
| 106 |
+
st.session_state.total_qa_pairs = 0
|
| 107 |
+
if 'logs' not in st.session_state:
|
| 108 |
+
st.session_state.logs = []
|
| 109 |
+
if 'qa_data' not in st.session_state:
|
| 110 |
+
st.session_state.qa_data = []
|
| 111 |
+
if 'enable_enrichment' not in st.session_state:
|
| 112 |
+
st.session_state.enable_enrichment = True
|
| 113 |
+
if 'min_relevance' not in st.session_state:
|
| 114 |
+
st.session_state.min_relevance = 70
|
| 115 |
+
if 'num_queries' not in st.session_state:
|
| 116 |
+
st.session_state.num_queries = 5
|
| 117 |
+
if 'temperature' not in st.session_state:
|
| 118 |
+
st.session_state.temperature = 0.7
|
| 119 |
+
if 'n_predict' not in st.session_state:
|
| 120 |
+
st.session_state.n_predict = 512
|
| 121 |
+
|
| 122 |
+
REQUEST_COUNT = 0
|
| 123 |
+
MAX_REQUESTS_BEFORE_PAUSE = 15
|
| 124 |
+
MIN_PAUSE = 2
|
| 125 |
+
MAX_PAUSE = 5
|
| 126 |
+
USE_API_KEYS = True
|
| 127 |
+
EOF
|
| 128 |
+
info "Fichier de configuration créé."
|
| 129 |
+
|
| 130 |
+
# --- Étape 6 : Lancement de l'application Streamlit ---
|
| 131 |
+
step "Lancement de l'application app.py..."
|
| 132 |
+
./venv/bin/streamlit run app.py
|
scripts/download_with_aria2c.sh
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
URL=$1
|
| 3 |
+
OUTPUT=$2
|
| 4 |
+
MAX_RETRIES=5
|
| 5 |
+
for i in $(seq 1 $MAX_RETRIES); do
|
| 6 |
+
echo "Tentative $i/$MAX_RETRIES: $URL"
|
| 7 |
+
aria2c -x 16 -s 16 -d "$(dirname "$OUTPUT")" -o "$(basename "$OUTPUT")" "$URL" && break
|
| 8 |
+
sleep 10
|
| 9 |
+
done
|
server/server.pid
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
12412
|
server/start_server.sh
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
MODEL_PATH="../models/qwen2.5-coder-1.5b-q8_0.gguf"
|
| 3 |
+
if [ ! -f "$MODEL_PATH" ]; then
|
| 4 |
+
echo "Le modèle GGUF est introuvable à: $MODEL_PATH"
|
| 5 |
+
exit 1
|
| 6 |
+
fi
|
| 7 |
+
"../llama.cpp/build/bin/llama-server" \\
|
| 8 |
+
-m "$MODEL_PATH" \
|
| 9 |
+
--port 8080 \
|
| 10 |
+
--host 0.0.0.0 \
|
| 11 |
+
-c 4096 \
|
| 12 |
+
-ngl 999 \
|
| 13 |
+
--threads 8 \
|
| 14 |
+
> "logs/llama_server.log" 2>&1 &
|
| 15 |
+
echo $! > "server/server.pid"
|
server/stop_server.sh
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
PID_FILE="server/server.pid"
|
| 3 |
+
if [ -f "$PID_FILE" ]; then
|
| 4 |
+
PID=$(cat "$PID_FILE")
|
| 5 |
+
kill $PID
|
| 6 |
+
rm "$PID_FILE"
|
| 7 |
+
echo "Serveur llama.cpp arrêté."
|
| 8 |
+
else
|
| 9 |
+
echo "Aucun PID de serveur trouvé."
|
| 10 |
+
fi
|