Update app.py
Browse files
app.py
CHANGED
|
@@ -11,757 +11,447 @@ import subprocess
|
|
| 11 |
import shutil
|
| 12 |
from datetime import datetime
|
| 13 |
from pathlib import Path
|
|
|
|
|
|
|
| 14 |
import streamlit as st
|
| 15 |
import pandas as pd
|
| 16 |
import plotly.express as px
|
| 17 |
-
|
| 18 |
-
|
| 19 |
import html2text
|
| 20 |
|
| 21 |
-
# Importation du module de configuration
|
| 22 |
from config import app_config as config
|
| 23 |
|
| 24 |
-
#
|
|
|
|
| 25 |
st.set_page_config(
|
| 26 |
page_title="DevSecOps Data Bot",
|
| 27 |
layout="wide",
|
| 28 |
initial_sidebar_state="expanded"
|
| 29 |
)
|
| 30 |
|
| 31 |
-
# Initialisation
|
| 32 |
config.init_session_state()
|
| 33 |
|
| 34 |
-
# Configuration du logging
|
| 35 |
def setup_logging():
|
|
|
|
| 36 |
log_dir = Path("logs")
|
| 37 |
log_dir.mkdir(exist_ok=True)
|
| 38 |
-
log_file = log_dir / f"data_collector_{datetime.now().strftime('%Y%m%
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
logger = setup_logging()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
# Fonctions pour le serveur LLM (llama.cpp)
|
| 52 |
def check_server_status():
|
|
|
|
| 53 |
try:
|
| 54 |
-
response = requests.get(config.LLM_SERVER_URL.replace("/completion", "/health"), timeout=
|
| 55 |
-
if response.status_code == 200:
|
| 56 |
st.session_state.server_status = "Actif"
|
| 57 |
return True
|
| 58 |
-
else:
|
| 59 |
-
st.session_state.server_status = "Inactif"
|
| 60 |
-
return False
|
| 61 |
except requests.exceptions.RequestException:
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
def start_llm_server():
|
|
|
|
| 66 |
if check_server_status():
|
| 67 |
-
st.
|
| 68 |
return
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
model_path = Path("models/qwen2.5-coder-1.5b-q8_0.gguf")
|
| 71 |
if not model_path.exists():
|
| 72 |
-
st.error("Le modèle GGUF
|
| 73 |
return
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
if not llama_server.exists():
|
| 77 |
-
st.error("llama.cpp n'est pas compilé. Veuillez compiler llama.cpp d'abord.")
|
| 78 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
MODEL_PATH="{str(model_path)}"
|
| 85 |
-
if [ ! -f "$MODEL_PATH" ]; then
|
| 86 |
-
echo "Le modèle GGUF est introuvable à: $MODEL_PATH"
|
| 87 |
-
exit 1
|
| 88 |
-
fi
|
| 89 |
-
"{str(llama_server)}" \\
|
| 90 |
-
-m "$MODEL_PATH" \\
|
| 91 |
-
--port 8080 \\
|
| 92 |
-
--host 0.0.0.0 \\
|
| 93 |
-
-c 4096 \\
|
| 94 |
-
-ngl 999 \\
|
| 95 |
-
--threads 8 \\
|
| 96 |
-
> "logs/llama_server.log" 2>&1 &
|
| 97 |
-
echo $! > "server/server.pid"
|
| 98 |
-
""")
|
| 99 |
-
os.chmod(start_script, 0o755)
|
| 100 |
-
|
| 101 |
try:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
if check_server_status():
|
| 106 |
-
st.success("Serveur
|
| 107 |
else:
|
| 108 |
-
st.error("Le serveur n'a pas pu démarrer. Vérifiez les logs dans
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
-
st.error(f"Erreur lors du démarrage du serveur: {
|
| 111 |
|
| 112 |
def stop_llm_server():
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
kill $PID
|
| 121 |
-
rm "$PID_FILE"
|
| 122 |
-
echo "Serveur llama.cpp arrêté."
|
| 123 |
-
else
|
| 124 |
-
echo "Aucun PID de serveur trouvé."
|
| 125 |
-
fi
|
| 126 |
-
""")
|
| 127 |
-
os.chmod(stop_script, 0o755)
|
| 128 |
-
|
| 129 |
try:
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
except Exception as e:
|
| 138 |
-
st.error(f"Erreur lors de l'arrêt du serveur: {
|
| 139 |
-
|
| 140 |
-
def load_prompts():
|
| 141 |
-
prompts_file = Path("config/prompts.json")
|
| 142 |
-
if not prompts_file.exists():
|
| 143 |
-
default_prompts = {
|
| 144 |
-
"enrich_qa": {
|
| 145 |
-
"system": "Tu es un expert DevSecOps. Améliore cette paire question/réponse en y ajoutant des tags, des signatures d'attaques potentielles, et en structurant les informations. Réponds uniquement avec un objet JSON.",
|
| 146 |
-
"prompt_template": "Question originale: {question}\nRéponse originale: {answer}\nContexte: {context}\n\nFournis une version améliorée sous forme de JSON:\n{{\n \"question\": \"question améliorée\",\n \"answer\": \"réponse améliorée\",\n \"tags\": [\"tag1\", \"tag2\"],\n \"attack_signatures\": [\"signature1\", \"signature2\"]\n}}"
|
| 147 |
-
},
|
| 148 |
-
"analyze_relevance": {
|
| 149 |
-
"system": "Analyse ce contenu et détermine s'il est pertinent pour DevSecOps. Si pertinent, extrais les signatures d'attaques connues. Réponds uniquement avec un objet JSON.",
|
| 150 |
-
"prompt_template": "Contenu: {content}...\n\nRéponds sous forme de JSON:\n{{\n \"relevant\": true,\n \"attack_signatures\": [\"signature1\", \"signature2\"],\n \"security_tags\": [\"tag1\", \"tag2\"],\n \"it_relevance_score\": 0-100\n}}"
|
| 151 |
-
},
|
| 152 |
-
"generate_queries": {
|
| 153 |
-
"system": "Analyse les données actuelles et génère 5 nouvelles requêtes de recherche pour trouver plus de contenu DevSecOps pertinent, en particulier des signatures d'attaques et vulnérabilités. Réponds uniquement avec un objet JSON.",
|
| 154 |
-
"prompt_template": "Données actuelles: {current_data}...\n\nRéponds sous forme de JSON:\n{{\n \"queries\": [\"query1\", \"query2\", \"query3\", \"query4\", \"query5\"]\n}}"
|
| 155 |
-
}
|
| 156 |
-
}
|
| 157 |
-
with open(prompts_file, 'w') as f:
|
| 158 |
-
json.dump(default_prompts, f, indent=2)
|
| 159 |
-
|
| 160 |
-
with open(prompts_file, 'r', encoding='utf-8') as f:
|
| 161 |
-
return json.load(f)
|
| 162 |
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
class IAEnricher:
|
|
|
|
| 166 |
def __init__(self):
|
| 167 |
self.server_url = config.LLM_SERVER_URL
|
| 168 |
self.available = check_server_status()
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
else:
|
| 172 |
-
logger.warning("Serveur llama.cpp non disponible. Les fonctionnalités d'IA seront désactivées.")
|
| 173 |
-
|
| 174 |
-
def _get_qwen_response(self, prompt, **kwargs):
|
| 175 |
if not self.available:
|
| 176 |
return None
|
| 177 |
|
| 178 |
payload = {
|
| 179 |
"prompt": prompt,
|
| 180 |
-
"n_predict":
|
| 181 |
-
"temperature":
|
| 182 |
-
"stop": ["<|im_end|>", "</s>"]
|
| 183 |
}
|
| 184 |
|
| 185 |
try:
|
| 186 |
-
response = requests.post(self.server_url, json=payload, timeout=
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
else:
|
| 190 |
-
logger.error(f"Erreur du serveur LLM: {response.status_code} - {response.text}")
|
| 191 |
-
return None
|
| 192 |
except requests.exceptions.RequestException as e:
|
| 193 |
-
logger.error(f"Erreur de
|
| 194 |
return None
|
| 195 |
|
| 196 |
-
def
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
prompt_template = PROMPTS.get("enrich_qa", {}).get("prompt_template", "")
|
| 201 |
-
system_prompt = PROMPTS.get("enrich_qa", {}).get("system", "")
|
| 202 |
-
|
| 203 |
-
full_prompt = f"{system_prompt}\n\n{prompt_template.format(question=question, answer=answer, context=context[:500])}"
|
| 204 |
-
response_text = self._get_qwen_response(full_prompt, n_predict=1024)
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
try:
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
enriched_data.get('answer', answer),
|
| 214 |
-
enriched_data.get('tags', []),
|
| 215 |
-
enriched_data.get('attack_signatures', [])
|
| 216 |
-
)
|
| 217 |
-
except json.JSONDecodeError as e:
|
| 218 |
-
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 219 |
-
|
| 220 |
-
return question, answer, [], []
|
| 221 |
-
|
| 222 |
def analyze_content_relevance(self, content):
|
|
|
|
| 223 |
if not self.available or not st.session_state.enable_enrichment:
|
| 224 |
-
return True, [], [], 50
|
| 225 |
-
|
| 226 |
-
prompt_template = PROMPTS.get("analyze_relevance", {}).get("prompt_template", "")
|
| 227 |
-
system_prompt = PROMPTS.get("analyze_relevance", {}).get("system", "")
|
| 228 |
-
|
| 229 |
-
full_prompt = f"{system_prompt}\n\n{prompt_template.format(content=content[:1500])}"
|
| 230 |
-
response_text = self._get_qwen_response(full_prompt, n_predict=256, temperature=st.session_state.temperature)
|
| 231 |
-
|
| 232 |
-
if response_text:
|
| 233 |
-
try:
|
| 234 |
-
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 235 |
-
if json_match:
|
| 236 |
-
analysis = json.loads(json_match.group())
|
| 237 |
-
return (
|
| 238 |
-
analysis.get('relevant', True),
|
| 239 |
-
analysis.get('attack_signatures', []),
|
| 240 |
-
analysis.get('security_tags', []),
|
| 241 |
-
analysis.get('it_relevance_score', 50)
|
| 242 |
-
)
|
| 243 |
-
except json.JSONDecodeError as e:
|
| 244 |
-
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 245 |
-
return True, [], [], 50
|
| 246 |
-
|
| 247 |
-
def generate_adaptive_queries(self, current_data):
|
| 248 |
-
if not self.available or not st.session_state.enable_enrichment:
|
| 249 |
-
return []
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
|
|
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
| 260 |
-
if json_match:
|
| 261 |
-
queries_data = json.loads(json_match.group())
|
| 262 |
-
return queries_data.get('queries', [])
|
| 263 |
-
except json.JSONDecodeError as e:
|
| 264 |
-
logger.warning(f"Erreur de décodage JSON de la réponse IA: {e}")
|
| 265 |
-
return []
|
| 266 |
|
| 267 |
-
|
|
|
|
| 268 |
|
| 269 |
def check_api_keys():
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
'NVD_API_KEY': os.getenv('NVD_API_KEY'),
|
| 274 |
-
'STACK_EXCHANGE_API_KEY': os.getenv('STACK_EXCHANGE_API_KEY')
|
| 275 |
-
}
|
| 276 |
-
|
| 277 |
-
valid_keys = {k: v for k, v in keys.items() if v and v != f'your_{k.lower()}_here'}
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
logger.warning(f"Clés d'API manquantes ou non configurées: {', '.join(missing)}")
|
| 283 |
-
logger.warning("Le bot fonctionnera en mode dégradé avec des pauses plus longues.")
|
| 284 |
else:
|
| 285 |
-
logger.info("Toutes les clés
|
| 286 |
-
|
| 287 |
|
| 288 |
-
def make_request(url, headers=None, params=None
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
if config.REQUEST_COUNT >= config.MAX_REQUESTS_BEFORE_PAUSE:
|
| 294 |
-
pause_time = random.uniform(config.MIN_PAUSE * pause_factor, config.MAX_PAUSE * pause_factor)
|
| 295 |
-
logger.info(f"Pause de {pause_time:.2f} secondes après {config.REQUEST_COUNT} requêtes...")
|
| 296 |
-
time.sleep(pause_time)
|
| 297 |
-
config.REQUEST_COUNT = 0
|
| 298 |
|
| 299 |
try:
|
| 300 |
response = requests.get(url, headers=headers, params=params, timeout=30)
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
return response
|
| 304 |
-
elif response.status_code in [401, 403]:
|
| 305 |
-
logger.warning(f"Accès non autorisé à {url}. Vérifiez vos clés d'API.")
|
| 306 |
-
return None
|
| 307 |
-
elif response.status_code == 429:
|
| 308 |
-
retry_after = int(response.headers.get('Retry-After', 10))
|
| 309 |
logger.warning(f"Limite de débit atteinte. Pause de {retry_after} secondes...")
|
| 310 |
time.sleep(retry_after)
|
| 311 |
-
return make_request(url, headers, params
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
|
|
|
| 315 |
except requests.exceptions.RequestException as e:
|
| 316 |
-
logger.error(f"Erreur
|
| 317 |
return None
|
| 318 |
|
| 319 |
def clean_html(html_content):
|
|
|
|
| 320 |
if not html_content:
|
| 321 |
return ""
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
tags = list(set((tags or []) + enriched_tags))
|
| 335 |
-
attack_signatures = list(set((attack_signatures or []) + enriched_signatures))
|
| 336 |
-
|
| 337 |
-
save_dir = Path("data") / category / "qa"
|
| 338 |
-
save_dir.mkdir(parents=True, exist_ok=True)
|
| 339 |
-
|
| 340 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 341 |
-
filename = f"{subcategory}_{source}_{st.session_state.total_qa_pairs}_{timestamp}.json"
|
| 342 |
-
filename = re.sub(r'[^\w\s-]', '', filename).replace(' ', '_')
|
| 343 |
-
|
| 344 |
-
qa_data = {
|
| 345 |
-
"question": question,
|
| 346 |
-
"answer": answer,
|
| 347 |
-
"category": category,
|
| 348 |
-
"subcategory": subcategory,
|
| 349 |
-
"source": source,
|
| 350 |
-
"timestamp": timestamp,
|
| 351 |
-
"attack_signatures": attack_signatures or [],
|
| 352 |
-
"tags": tags or []
|
| 353 |
-
}
|
| 354 |
-
|
| 355 |
-
try:
|
| 356 |
-
with open(save_dir / filename, "w", encoding="utf-8") as f:
|
| 357 |
-
json.dump(qa_data, f, indent=2, ensure_ascii=False)
|
| 358 |
-
|
| 359 |
-
st.session_state.total_qa_pairs += 1
|
| 360 |
-
st.session_state.qa_data.append(qa_data)
|
| 361 |
-
|
| 362 |
-
logger.info(f"Paire Q/R sauvegardée: {filename} (Total: {st.session_state.total_qa_pairs})")
|
| 363 |
-
st.session_state.logs.append(f"Sauvegardé: {filename}")
|
| 364 |
-
except Exception as e:
|
| 365 |
-
logger.error(f"Erreur lors de la sauvegarde du fichier {filename}: {str(e)}")
|
| 366 |
|
| 367 |
-
def collect_kaggle_data(queries):
|
| 368 |
-
logger.info("Début de la collecte des données Kaggle...")
|
| 369 |
-
|
| 370 |
-
# Importation de Kaggle ici, après avoir configuré les variables d'environnement
|
| 371 |
-
os.environ['KAGGLE_USERNAME'] = os.getenv('KAGGLE_USERNAME')
|
| 372 |
-
os.environ['KAGGLE_KEY'] = os.getenv('KAGGLE_KEY')
|
| 373 |
-
import kaggle
|
| 374 |
-
kaggle.api.authenticate()
|
| 375 |
-
|
| 376 |
-
search_queries = queries.split('\n') if queries else ["cybersecurity", "vulnerability"]
|
| 377 |
-
|
| 378 |
-
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 379 |
-
adaptive_queries = ia_enricher.generate_adaptive_queries("Initial data keywords: " + ", ".join(search_queries))
|
| 380 |
-
search_queries.extend(adaptive_queries)
|
| 381 |
-
|
| 382 |
-
for query in list(set(search_queries)):
|
| 383 |
-
logger.info(f"Recherche de datasets Kaggle pour: {query}")
|
| 384 |
-
try:
|
| 385 |
-
datasets = kaggle.api.dataset_list(search=query, max_results=5)
|
| 386 |
-
for dataset in datasets:
|
| 387 |
-
dataset_ref = dataset.ref
|
| 388 |
-
if ia_enricher.available and st.session_state.enable_enrichment:
|
| 389 |
-
is_relevant, _, _, relevance_score = ia_enricher.analyze_content_relevance(dataset.title + " " + dataset.subtitle)
|
| 390 |
-
if not is_relevant or relevance_score < st.session_state.min_relevance:
|
| 391 |
-
logger.info(f"Dataset non pertinent ({relevance_score}%): {dataset_ref}. Ignoré.")
|
| 392 |
-
continue
|
| 393 |
-
|
| 394 |
-
logger.info(f"Traitement du dataset: {dataset_ref}")
|
| 395 |
-
download_dir = Path("data") / "security" / "kaggle" / dataset_ref.replace('/', '_')
|
| 396 |
-
download_dir.mkdir(parents=True, exist_ok=True)
|
| 397 |
-
kaggle.api.dataset_download_files(dataset_ref, path=download_dir, unzip=True)
|
| 398 |
-
|
| 399 |
-
for file_path in download_dir.glob('*'):
|
| 400 |
-
if file_path.is_file() and file_path.suffix.lower() in ['.json', '.csv', '.txt']:
|
| 401 |
-
try:
|
| 402 |
-
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 403 |
-
file_content = f.read()[:5000]
|
| 404 |
-
is_relevant, signatures, security_tags, _ = ia_enricher.analyze_content_relevance(file_content)
|
| 405 |
-
if is_relevant:
|
| 406 |
-
save_qa_pair(
|
| 407 |
-
question=f"Quelles informations de sécurité contient le fichier {file_path.name} du dataset '{dataset.title}'?",
|
| 408 |
-
answer=file_content, category="security", subcategory="vulnerability",
|
| 409 |
-
source=f"kaggle_{dataset_ref}", attack_signatures=signatures, tags=security_tags
|
| 410 |
-
)
|
| 411 |
-
except Exception as e:
|
| 412 |
-
logger.error(f"Erreur lors du traitement du fichier {file_path}: {str(e)}")
|
| 413 |
-
time.sleep(random.uniform(2, 4))
|
| 414 |
-
except Exception as e:
|
| 415 |
-
logger.error(f"Erreur lors de la collecte des données Kaggle pour {query}: {str(e)}")
|
| 416 |
-
logger.info("Collecte des données Kaggle terminée.")
|
| 417 |
|
| 418 |
-
def collect_github_data(
|
| 419 |
-
|
|
|
|
| 420 |
base_url = "https://api.github.com"
|
| 421 |
headers = {"Accept": "application/vnd.github.v3+json"}
|
| 422 |
if config.USE_API_KEYS:
|
| 423 |
-
|
| 424 |
-
headers["Authorization"] = f"token {token}"
|
| 425 |
|
| 426 |
-
|
|
|
|
| 427 |
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
comments_url = issue.get("comments_url")
|
| 454 |
-
comments_response = make_request(comments_url, headers=headers)
|
| 455 |
-
answer_parts = []
|
| 456 |
-
if comments_response:
|
| 457 |
-
comments_data = comments_response.json()
|
| 458 |
-
for comment in comments_data:
|
| 459 |
-
comment_body = clean_html(comment.get("body", ""))
|
| 460 |
-
if comment_body: answer_parts.append(comment_body)
|
| 461 |
-
|
| 462 |
-
if answer_parts:
|
| 463 |
-
answer = "\n\n".join(answer_parts)
|
| 464 |
-
save_qa_pair(
|
| 465 |
-
question=f"{question}: {body}", answer=answer, category="devsecops",
|
| 466 |
-
subcategory="github", source=f"github_{repo_name}"
|
| 467 |
-
)
|
| 468 |
-
time.sleep(random.uniform(1, 3))
|
| 469 |
-
logger.info("Collecte des données GitHub terminée.")
|
| 470 |
-
|
| 471 |
-
def collect_huggingface_data(queries):
|
| 472 |
-
logger.info("Début de la collecte des données Hugging Face...")
|
| 473 |
-
base_url = "https://huggingface.co/api"
|
| 474 |
-
headers = {"Accept": "application/json"}
|
| 475 |
-
if config.USE_API_KEYS:
|
| 476 |
-
token = os.getenv('HUGGINGFACE_API_TOKEN')
|
| 477 |
-
headers["Authorization"] = f"Bearer {token}"
|
| 478 |
-
|
| 479 |
-
search_queries = queries.split('\n') if queries else ["security", "devsecops"]
|
| 480 |
-
for query in search_queries:
|
| 481 |
-
logger.info(f"Recherche de datasets pour: {query}")
|
| 482 |
-
search_url = f"{base_url}/datasets"
|
| 483 |
-
params = {"search": query, "limit": 10}
|
| 484 |
-
response = make_request(search_url, headers=headers, params=params)
|
| 485 |
-
if not response: continue
|
| 486 |
-
|
| 487 |
-
data = response.json()
|
| 488 |
-
for dataset in data:
|
| 489 |
-
dataset_id = dataset["id"].replace("/", "_")
|
| 490 |
-
logger.info(f"Traitement du dataset: {dataset['id']}")
|
| 491 |
-
dataset_url = f"{base_url}/datasets/{dataset['id']}"
|
| 492 |
-
dataset_response = make_request(dataset_url, headers=headers)
|
| 493 |
-
|
| 494 |
-
if dataset_response:
|
| 495 |
-
dataset_data = dataset_response.json()
|
| 496 |
-
description = clean_html(dataset_data.get("description", ""))
|
| 497 |
-
if not description or len(description) < 100: continue
|
| 498 |
-
tags = dataset_data.get("tags", [])
|
| 499 |
-
tags_text = ", ".join(tags) if tags else "No tags"
|
| 500 |
-
answer = f"Dataset: {dataset_data.get('id', '')}\nDownloads: {dataset_data.get('downloads', 0)}\nTags: {tags_text}\n\n{description}"
|
| 501 |
-
|
| 502 |
-
save_qa_pair(
|
| 503 |
-
question=f"What is the {dataset_data.get('id', '')} dataset about?", answer=answer,
|
| 504 |
-
category="security", subcategory="dataset", source=f"huggingface_{dataset_id}", tags=tags
|
| 505 |
-
)
|
| 506 |
-
time.sleep(random.uniform(1, 3))
|
| 507 |
-
logger.info("Collecte des données Hugging Face terminée.")
|
| 508 |
-
|
| 509 |
-
def collect_nvd_data():
|
| 510 |
-
logger.info("Début de la collecte des données NVD...")
|
| 511 |
base_url = "https://services.nvd.nist.gov/rest/json/cves/2.0"
|
| 512 |
-
headers = {
|
| 513 |
if config.USE_API_KEYS:
|
| 514 |
-
|
| 515 |
-
headers["apiKey"] = key
|
| 516 |
|
| 517 |
-
params = {"resultsPerPage":
|
| 518 |
response = make_request(base_url, headers=headers, params=params)
|
| 519 |
-
if not response:
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
answer = f"CVE ID: {cve_id}\nSeverity: {severity}\nCVSS Score: {score}\nReferences: {', '.join(references[:5])}\n\nDescription: {description}"
|
| 540 |
-
|
| 541 |
-
save_qa_pair(
|
| 542 |
-
question=f"What is the vulnerability {cve_id}?", answer=answer,
|
| 543 |
-
category="security", subcategory="vulnerability", source=f"nvd_{cve_id}"
|
| 544 |
-
)
|
| 545 |
-
logger.info("Collecte des données NVD terminée.")
|
| 546 |
-
|
| 547 |
-
def collect_stack_exchange_data(queries):
|
| 548 |
-
logger.info("Début de la collecte des données Stack Exchange...")
|
| 549 |
-
base_url = "https://api.stackexchange.com/2.3"
|
| 550 |
-
params_base = {"pagesize": 10, "order": "desc", "sort": "votes", "filter": "withbody"}
|
| 551 |
-
if config.USE_API_KEYS:
|
| 552 |
-
key = os.getenv('STACK_EXCHANGE_API_KEY')
|
| 553 |
-
params_base["key"] = key
|
| 554 |
-
|
| 555 |
-
sites = [
|
| 556 |
-
{"site": "security", "category": "security", "subcategory": "security"},
|
| 557 |
-
{"site": "devops", "category": "devsecops", "subcategory": "devops"}
|
| 558 |
-
]
|
| 559 |
-
|
| 560 |
-
tags_by_site = {
|
| 561 |
-
"security": ["security", "vulnerability"],
|
| 562 |
-
"devops": ["devops", "ci-cd"]
|
| 563 |
-
}
|
| 564 |
-
|
| 565 |
-
for site_config in sites:
|
| 566 |
-
site = site_config["site"]
|
| 567 |
-
category = site_config["category"]
|
| 568 |
-
subcategory = site_config["subcategory"]
|
| 569 |
-
logger.info(f"Collecte des données du site: {site}")
|
| 570 |
-
tags = tags_by_site.get(site, []) + (queries.split('\n') if queries else [])
|
| 571 |
-
|
| 572 |
-
for tag in list(set(tags)):
|
| 573 |
-
logger.info(f"Recherche de questions avec le tag: {tag}")
|
| 574 |
-
questions_url = f"{base_url}/questions"
|
| 575 |
-
params = {**params_base, "site": site, "tagged": tag}
|
| 576 |
-
|
| 577 |
-
response = make_request(questions_url, params=params)
|
| 578 |
-
if not response: continue
|
| 579 |
-
|
| 580 |
-
questions_data = response.json()
|
| 581 |
-
for question in questions_data.get("items", []):
|
| 582 |
-
question_id = question.get("question_id")
|
| 583 |
-
title = question.get("title", "")
|
| 584 |
-
body = clean_html(question.get("body", ""))
|
| 585 |
-
if not body or len(body) < 50: continue
|
| 586 |
-
|
| 587 |
-
answers_url = f"{base_url}/questions/{question_id}/answers"
|
| 588 |
-
answers_params = {**params_base, "site": site}
|
| 589 |
-
answers_response = make_request(answers_url, params=answers_params)
|
| 590 |
-
answer_body = ""
|
| 591 |
-
if answers_response and answers_response.json().get("items"):
|
| 592 |
-
answer_body = clean_html(answers_response.json()["items"][0].get("body", ""))
|
| 593 |
-
|
| 594 |
-
if answer_body:
|
| 595 |
-
save_qa_pair(
|
| 596 |
-
question=title, answer=answer_body, category=category,
|
| 597 |
-
subcategory=subcategory, source=f"{site}_{question_id}", tags=question.get("tags", [])
|
| 598 |
-
)
|
| 599 |
-
time.sleep(random.uniform(1, 3))
|
| 600 |
-
logger.info("Collecte des données Stack Exchange terminée.")
|
| 601 |
-
|
| 602 |
-
def run_data_collection(sources, queries):
|
| 603 |
st.session_state.bot_status = "En cours d'exécution"
|
| 604 |
-
st.session_state.logs = []
|
| 605 |
|
| 606 |
-
|
|
|
|
|
|
|
| 607 |
|
| 608 |
-
|
| 609 |
-
status_text = st.empty()
|
| 610 |
|
| 611 |
enabled_sources = [s for s, enabled in sources.items() if enabled]
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
|
|
|
| 617 |
try:
|
| 618 |
-
if source_name == "
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
elif source_name == "Hugging Face":
|
| 623 |
-
collect_huggingface_data(queries.get("Hugging Face", ""))
|
| 624 |
elif source_name == "NVD":
|
| 625 |
-
collect_nvd_data()
|
| 626 |
-
|
| 627 |
-
|
| 628 |
except Exception as e:
|
| 629 |
-
logger.error(f"Erreur fatale lors de la collecte
|
| 630 |
-
|
| 631 |
-
completed_sources += 1
|
| 632 |
-
progress_bar.progress(completed_sources / total_sources)
|
| 633 |
-
|
| 634 |
-
st.session_state.bot_status = "Arrêté"
|
| 635 |
-
st.info("Collecte des données terminée!")
|
| 636 |
progress_bar.empty()
|
| 637 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
|
| 639 |
def main():
|
| 640 |
-
|
| 641 |
-
st.
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
|
|
|
| 645 |
|
| 646 |
-
tabs = st.tabs(["Bot", "Statistiques & Données", "Configuration"])
|
| 647 |
|
| 648 |
with tabs[0]:
|
| 649 |
-
st.header("
|
| 650 |
col1, col2, col3 = st.columns(3)
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
st.
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
st.session_state.qa_data = []
|
| 685 |
-
st.session_state.total_qa_pairs = 0
|
| 686 |
-
run_data_collection(sources, queries)
|
| 687 |
-
else:
|
| 688 |
-
st.warning("La collecte est en cours. Veuillez attendre qu'elle se termine.")
|
| 689 |
-
if st.button("Forcer l'arrêt", use_container_width=True, type="secondary"):
|
| 690 |
-
st.session_state.bot_status = "Arrêté"
|
| 691 |
-
st.info("La collecte a été arrêtée manuellement.")
|
| 692 |
-
|
| 693 |
-
st.markdown("---")
|
| 694 |
-
st.subheader("Logs d'exécution")
|
| 695 |
-
log_container = st.container(border=True)
|
| 696 |
-
with log_container:
|
| 697 |
-
for log in st.session_state.logs:
|
| 698 |
-
st.text(log)
|
| 699 |
-
|
| 700 |
with tabs[1]:
|
| 701 |
-
st.header("
|
| 702 |
if st.session_state.qa_data:
|
| 703 |
df = pd.DataFrame(st.session_state.qa_data)
|
| 704 |
|
| 705 |
st.subheader("Aperçu des données")
|
| 706 |
-
st.dataframe(df
|
| 707 |
|
| 708 |
st.subheader("Répartition par source")
|
| 709 |
-
source_counts = df['source'].apply(lambda x: x.split('_')[0]).value_counts()
|
| 710 |
-
source_counts.
|
| 711 |
-
|
| 712 |
st.plotly_chart(fig_source, use_container_width=True)
|
| 713 |
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
json_data = json.dumps(st.session_state.qa_data, indent=2)
|
| 724 |
-
st.download_button(
|
| 725 |
-
label="Télécharger JSON",
|
| 726 |
-
data=json_data,
|
| 727 |
-
file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
| 728 |
-
mime="application/json",
|
| 729 |
-
use_container_width=True
|
| 730 |
-
)
|
| 731 |
-
with col2:
|
| 732 |
-
csv_data = df.to_csv(index=False)
|
| 733 |
-
st.download_button(
|
| 734 |
-
label="Télécharger CSV",
|
| 735 |
-
data=csv_data,
|
| 736 |
-
file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 737 |
-
mime="text/csv",
|
| 738 |
-
use_container_width=True
|
| 739 |
-
)
|
| 740 |
else:
|
| 741 |
-
st.info("Aucune donnée à afficher. Lancez
|
| 742 |
-
|
| 743 |
with tabs[2]:
|
| 744 |
st.header("Configuration Avancée")
|
| 745 |
-
st.subheader("
|
|
|
|
| 746 |
|
| 747 |
llm_col1, llm_col2 = st.columns(2)
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
stop_llm_server()
|
| 757 |
-
|
| 758 |
-
st.markdown("---")
|
| 759 |
-
|
| 760 |
st.subheader("Paramètres d'enrichissement IA")
|
| 761 |
-
st.session_state.enable_enrichment = st.
|
| 762 |
-
st.session_state.min_relevance = st.slider("Score de pertinence minimum", 0, 100,
|
| 763 |
-
st.session_state.temperature = st.slider("Température de l'IA", 0.0, 1.
|
| 764 |
-
st.session_state.n_predict = st.slider("Nombre de tokens", 128, 1024, st.session_state.n_predict, help="Nombre maximum de tokens à générer par l'IA.")
|
| 765 |
|
| 766 |
if __name__ == "__main__":
|
| 767 |
-
main()
|
|
|
|
| 11 |
import shutil
|
| 12 |
from datetime import datetime
|
| 13 |
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
# Streamlit et visualisation
|
| 16 |
import streamlit as st
|
| 17 |
import pandas as pd
|
| 18 |
import plotly.express as px
|
| 19 |
+
|
| 20 |
+
# Parsing HTML
|
| 21 |
import html2text
|
| 22 |
|
| 23 |
+
# Importation du module de configuration (supposé exister)
|
| 24 |
from config import app_config as config
|
| 25 |
|
| 26 |
+
# --- CONFIGURATION DE LA PAGE ET LOGGING ---
|
| 27 |
+
|
| 28 |
st.set_page_config(
|
| 29 |
page_title="DevSecOps Data Bot",
|
| 30 |
layout="wide",
|
| 31 |
initial_sidebar_state="expanded"
|
| 32 |
)
|
| 33 |
|
| 34 |
+
# Initialisation de l'état de la session (géré par le fichier config)
|
| 35 |
config.init_session_state()
|
| 36 |
|
|
|
|
| 37 |
def setup_logging():
|
| 38 |
+
"""Configure un logger pour tracer l'exécution dans un fichier et la console."""
|
| 39 |
log_dir = Path("logs")
|
| 40 |
log_dir.mkdir(exist_ok=True)
|
| 41 |
+
log_file = log_dir / f"data_collector_{datetime.now().strftime('%Y%m%d')}.log"
|
| 42 |
+
|
| 43 |
+
# Évite d'ajouter des handlers multiples si la fonction est appelée plusieurs fois
|
| 44 |
+
logger = logging.getLogger(__name__)
|
| 45 |
+
if not logger.handlers:
|
| 46 |
+
logger.setLevel(logging.INFO)
|
| 47 |
+
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
| 48 |
+
|
| 49 |
+
file_handler = logging.FileHandler(log_file)
|
| 50 |
+
file_handler.setFormatter(formatter)
|
| 51 |
+
logger.addHandler(file_handler)
|
| 52 |
+
|
| 53 |
+
stream_handler = logging.StreamHandler(sys.stdout)
|
| 54 |
+
stream_handler.setFormatter(formatter)
|
| 55 |
+
logger.addHandler(stream_handler)
|
| 56 |
+
|
| 57 |
+
return logger
|
| 58 |
|
| 59 |
logger = setup_logging()
|
| 60 |
+
h_parser = html2text.HTML2Text()
|
| 61 |
+
h_parser.ignore_links = True
|
| 62 |
+
|
| 63 |
+
# --- GESTION DU SERVEUR LLM LOCAL ---
|
| 64 |
|
|
|
|
| 65 |
def check_server_status():
|
| 66 |
+
"""Vérifie si le serveur LLM est actif."""
|
| 67 |
try:
|
| 68 |
+
response = requests.get(config.LLM_SERVER_URL.replace("/completion", "/health"), timeout=3)
|
| 69 |
+
if response.status_code == 200 and response.json().get('status') == 'ok':
|
| 70 |
st.session_state.server_status = "Actif"
|
| 71 |
return True
|
|
|
|
|
|
|
|
|
|
| 72 |
except requests.exceptions.RequestException:
|
| 73 |
+
pass
|
| 74 |
+
st.session_state.server_status = "Inactif"
|
| 75 |
+
return False
|
| 76 |
|
| 77 |
def start_llm_server():
|
| 78 |
+
"""Démarre le serveur llama.cpp en subprocess."""
|
| 79 |
if check_server_status():
|
| 80 |
+
st.toast("✅ Le serveur LLM est déjà actif.", icon="✅")
|
| 81 |
return
|
| 82 |
+
|
| 83 |
+
model_path = Path(config.MODEL_PATH)
|
| 84 |
+
server_binary = Path(config.LLAMA_SERVER_PATH)
|
| 85 |
|
|
|
|
| 86 |
if not model_path.exists():
|
| 87 |
+
st.error(f"Le modèle GGUF est introuvable à : {config.MODEL_PATH}")
|
| 88 |
return
|
| 89 |
+
if not server_binary.exists():
|
| 90 |
+
st.error(f"Le binaire du serveur est introuvable : {config.LLAMA_SERVER_PATH}")
|
|
|
|
|
|
|
| 91 |
return
|
| 92 |
+
|
| 93 |
+
# Commande pour démarrer le serveur
|
| 94 |
+
command = [
|
| 95 |
+
str(server_binary),
|
| 96 |
+
"-m", str(model_path),
|
| 97 |
+
"--port", str(config.LLM_PORT),
|
| 98 |
+
"--host", "0.0.0.0",
|
| 99 |
+
"-c", "4096",
|
| 100 |
+
"-ngl", "999", # Nombre de couches GPU, ajuster si nécessaire
|
| 101 |
+
"--threads", "8"
|
| 102 |
+
]
|
| 103 |
|
| 104 |
+
log_file = Path("logs/llama_server.log")
|
| 105 |
+
pid_file = Path("server/server.pid")
|
| 106 |
+
pid_file.parent.mkdir(exist_ok=True)
|
| 107 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
try:
|
| 109 |
+
with open(log_file, 'w') as log:
|
| 110 |
+
process = subprocess.Popen(command, stdout=log, stderr=subprocess.STDOUT)
|
| 111 |
+
|
| 112 |
+
with open(pid_file, 'w') as f:
|
| 113 |
+
f.write(str(process.pid))
|
| 114 |
+
|
| 115 |
+
st.info("Tentative de démarrage du serveur LLM...")
|
| 116 |
+
time.sleep(10) # Laisse le temps au serveur de démarrer
|
| 117 |
+
|
| 118 |
if check_server_status():
|
| 119 |
+
st.success("Serveur LLM démarré avec succès !")
|
| 120 |
else:
|
| 121 |
+
st.error("Le serveur n'a pas pu démarrer. Vérifiez les logs dans `logs/llama_server.log`.")
|
| 122 |
+
|
| 123 |
except Exception as e:
|
| 124 |
+
st.error(f"Erreur lors du démarrage du serveur : {e}")
|
| 125 |
|
| 126 |
def stop_llm_server():
|
| 127 |
+
"""Arrête le serveur LLM en tuant le processus via son PID."""
|
| 128 |
+
pid_file = Path("server/server.pid")
|
| 129 |
+
if not pid_file.exists():
|
| 130 |
+
st.warning("Aucun fichier PID trouvé. Le serveur est probablement déjà arrêté.")
|
| 131 |
+
check_server_status()
|
| 132 |
+
return
|
| 133 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
try:
|
| 135 |
+
with open(pid_file, 'r') as f:
|
| 136 |
+
pid = int(f.read().strip())
|
| 137 |
+
|
| 138 |
+
# Tente de tuer le processus
|
| 139 |
+
os.kill(pid, 9) # SIGKILL
|
| 140 |
+
st.info(f"Signal d'arrêt envoyé au processus {pid}.")
|
| 141 |
+
os.remove(pid_file)
|
| 142 |
+
except (ProcessLookupError, FileNotFoundError):
|
| 143 |
+
st.warning("Le processus n'existait pas ou le fichier PID a déjà été supprimé.")
|
| 144 |
+
if pid_file.exists():
|
| 145 |
+
os.remove(pid_file)
|
| 146 |
except Exception as e:
|
| 147 |
+
st.error(f"Erreur lors de l'arrêt du serveur : {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
time.sleep(3)
|
| 150 |
+
if not check_server_status():
|
| 151 |
+
st.success("Serveur LLM arrêté avec succès.")
|
| 152 |
+
else:
|
| 153 |
+
st.warning("Le serveur semble toujours actif. Une vérification manuelle peut être nécessaire.")
|
| 154 |
+
|
| 155 |
+
# --- LOGIQUE D'ENRICHISSEMENT IA ---
|
| 156 |
|
| 157 |
class IAEnricher:
|
| 158 |
+
"""Classe pour interagir avec le LLM et enrichir les données."""
|
| 159 |
def __init__(self):
|
| 160 |
self.server_url = config.LLM_SERVER_URL
|
| 161 |
self.available = check_server_status()
|
| 162 |
+
|
| 163 |
+
def _query_llm(self, prompt, n_predict=512):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
if not self.available:
|
| 165 |
return None
|
| 166 |
|
| 167 |
payload = {
|
| 168 |
"prompt": prompt,
|
| 169 |
+
"n_predict": n_predict,
|
| 170 |
+
"temperature": st.session_state.temperature,
|
| 171 |
+
"stop": ["<|im_end|>", "</s>", "\n}\n"]
|
| 172 |
}
|
| 173 |
|
| 174 |
try:
|
| 175 |
+
response = requests.post(self.server_url, json=payload, timeout=120)
|
| 176 |
+
response.raise_for_status()
|
| 177 |
+
return response.json().get('content', '')
|
|
|
|
|
|
|
|
|
|
| 178 |
except requests.exceptions.RequestException as e:
|
| 179 |
+
logger.error(f"Erreur de communication avec le serveur LLM : {e}")
|
| 180 |
return None
|
| 181 |
|
| 182 |
+
def _extract_json(self, text):
|
| 183 |
+
"""Extrait un objet JSON d'une chaîne de texte, de manière plus robuste."""
|
| 184 |
+
if not text:
|
| 185 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
# Trouve le premier '{' et le dernier '}' pour délimiter le JSON potentiel
|
| 188 |
+
start = text.find('{')
|
| 189 |
+
end = text.rfind('}')
|
| 190 |
+
if start != -1 and end != -1 and end > start:
|
| 191 |
+
json_str = text[start:end+1]
|
| 192 |
try:
|
| 193 |
+
return json.loads(json_str)
|
| 194 |
+
except json.JSONDecodeError:
|
| 195 |
+
logger.warning(f"Impossible de décoder le JSON extrait : {json_str[:200]}...")
|
| 196 |
+
return None
|
| 197 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
def analyze_content_relevance(self, content):
|
| 199 |
+
"""Utilise l'IA pour analyser la pertinence d'un contenu."""
|
| 200 |
if not self.available or not st.session_state.enable_enrichment:
|
| 201 |
+
return {"relevant": True, "attack_signatures": [], "security_tags": [], "it_relevance_score": 50}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
prompt = config.PROMPTS["analyze_relevance"].format(content=content[:1500])
|
| 204 |
+
response_text = self._query_llm(prompt, n_predict=256)
|
| 205 |
|
| 206 |
+
analysis = self._extract_json(response_text)
|
| 207 |
+
if analysis:
|
| 208 |
+
return analysis
|
| 209 |
|
| 210 |
+
# Valeur par défaut si l'IA échoue
|
| 211 |
+
return {"relevant": True, "attack_signatures": [], "security_tags": [], "it_relevance_score": 50}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
|
| 214 |
+
# --- FONCTIONS DE COLLECTE DE DONNÉES ---
|
| 215 |
|
| 216 |
def check_api_keys():
|
| 217 |
+
"""Vérifie la présence des clés API et met à jour un flag global."""
|
| 218 |
+
keys_needed = ['GITHUB_API_TOKEN', 'NVD_API_KEY', 'STACK_EXCHANGE_API_KEY']
|
| 219 |
+
missing_keys = [key for key in keys_needed if not os.getenv(key)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
+
if missing_keys:
|
| 222 |
+
logger.warning(f"Clés API manquantes : {', '.join(missing_keys)}. Le bot fonctionnera en mode dégradé.")
|
| 223 |
+
config.USE_API_KEYS = False
|
|
|
|
|
|
|
| 224 |
else:
|
| 225 |
+
logger.info("Toutes les clés API nécessaires sont configurées.")
|
| 226 |
+
config.USE_API_KEYS = True
|
| 227 |
|
| 228 |
+
def make_request(url, headers=None, params=None):
|
| 229 |
+
"""Effectue une requête HTTP avec gestion des pauses et des erreurs."""
|
| 230 |
+
# Logique de pause pour éviter le rate-limiting
|
| 231 |
+
pause_time = random.uniform(2, 5) if not config.USE_API_KEYS else random.uniform(0.5, 1.5)
|
| 232 |
+
time.sleep(pause_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
try:
|
| 235 |
response = requests.get(url, headers=headers, params=params, timeout=30)
|
| 236 |
+
if response.status_code == 429: # Rate limited
|
| 237 |
+
retry_after = int(response.headers.get('Retry-After', 15))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
logger.warning(f"Limite de débit atteinte. Pause de {retry_after} secondes...")
|
| 239 |
time.sleep(retry_after)
|
| 240 |
+
return make_request(url, headers, params)
|
| 241 |
+
|
| 242 |
+
response.raise_for_status() # Lève une exception pour les codes 4xx/5xx
|
| 243 |
+
return response
|
| 244 |
+
|
| 245 |
except requests.exceptions.RequestException as e:
|
| 246 |
+
logger.error(f"Erreur de requête pour {url}: {e}")
|
| 247 |
return None
|
| 248 |
|
| 249 |
def clean_html(html_content):
|
| 250 |
+
"""Nettoie le contenu HTML pour extraire le texte brut."""
|
| 251 |
if not html_content:
|
| 252 |
return ""
|
| 253 |
+
return h_parser.handle(html_content)
|
| 254 |
+
|
| 255 |
+
def save_data(data):
|
| 256 |
+
"""Ajoute les données collectées à l'état de la session."""
|
| 257 |
+
st.session_state.qa_data.append(data)
|
| 258 |
+
st.session_state.total_qa_pairs = len(st.session_state.qa_data)
|
| 259 |
+
logger.info(f"Donnée sauvegardée : {data['source']} (Total: {st.session_state.total_qa_pairs})")
|
| 260 |
+
|
| 261 |
+
# Mise à jour du log dans l'UI
|
| 262 |
+
log_placeholder = st.session_state.get('log_placeholder')
|
| 263 |
+
if log_placeholder:
|
| 264 |
+
log_placeholder.text(f"Dernière collecte : {data['source']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
+
def collect_github_data(query, limit):
|
| 268 |
+
"""Collecte les problèmes de sécurité depuis des dépôts GitHub."""
|
| 269 |
+
logger.info(f"GitHub: Recherche de '{query}'...")
|
| 270 |
base_url = "https://api.github.com"
|
| 271 |
headers = {"Accept": "application/vnd.github.v3+json"}
|
| 272 |
if config.USE_API_KEYS:
|
| 273 |
+
headers["Authorization"] = f"token {os.getenv('GITHUB_API_TOKEN')}"
|
|
|
|
| 274 |
|
| 275 |
+
search_url = f"{base_url}/search/repositories"
|
| 276 |
+
params = {"q": query, "sort": "stars", "per_page": limit}
|
| 277 |
|
| 278 |
+
response = make_request(search_url, headers=headers, params=params)
|
| 279 |
+
if not response: return
|
| 280 |
+
|
| 281 |
+
for repo in response.json().get("items", []):
|
| 282 |
+
issues_url = repo["issues_url"].replace("{/number}", "")
|
| 283 |
+
issues_params = {"state": "all", "labels": "security,vulnerability", "per_page": 5}
|
| 284 |
+
issues_response = make_request(issues_url, headers=headers, params=issues_params)
|
| 285 |
+
|
| 286 |
+
if issues_response:
|
| 287 |
+
for issue in issues_response.json():
|
| 288 |
+
if "pull_request" not in issue and issue.get("body"):
|
| 289 |
+
analysis = ia_enricher.analyze_content_relevance(issue['title'] + " " + issue['body'])
|
| 290 |
+
if analysis['relevant'] and analysis['it_relevance_score'] >= st.session_state.min_relevance:
|
| 291 |
+
save_data({
|
| 292 |
+
"question": issue["title"],
|
| 293 |
+
"answer": clean_html(issue["body"]),
|
| 294 |
+
"category": "devsecops",
|
| 295 |
+
"source": f"github_{repo['full_name']}",
|
| 296 |
+
"tags": [t['name'] for t in issue.get('labels', [])] + analysis['security_tags']
|
| 297 |
+
})
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def collect_nvd_data(limit):
|
| 301 |
+
"""Collecte les dernières vulnérabilités CVE depuis le NVD."""
|
| 302 |
+
logger.info("NVD: Collecte des dernières vulnérabilités...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
base_url = "https://services.nvd.nist.gov/rest/json/cves/2.0"
|
| 304 |
+
headers = {}
|
| 305 |
if config.USE_API_KEYS:
|
| 306 |
+
headers["apiKey"] = os.getenv('NVD_API_KEY')
|
|
|
|
| 307 |
|
| 308 |
+
params = {"resultsPerPage": limit}
|
| 309 |
response = make_request(base_url, headers=headers, params=params)
|
| 310 |
+
if not response: return
|
| 311 |
+
|
| 312 |
+
for vuln in response.json().get("vulnerabilities", []):
|
| 313 |
+
cve = vuln.get("cve", {})
|
| 314 |
+
cve_id = cve.get("id", "N/A")
|
| 315 |
+
description = next((d['value'] for d in cve.get('descriptions', []) if d['lang'] == 'en'), "")
|
| 316 |
+
|
| 317 |
+
if description:
|
| 318 |
+
save_data({
|
| 319 |
+
"question": f"Qu'est-ce que la vulnérabilité {cve_id} ?",
|
| 320 |
+
"answer": description,
|
| 321 |
+
"category": "security",
|
| 322 |
+
"source": f"nvd_{cve_id}",
|
| 323 |
+
"tags": ["cve", "vulnerability"]
|
| 324 |
+
})
|
| 325 |
+
|
| 326 |
+
# --- FONCTION PRINCIPALE ET INTERFACE STREAMLIT ---
|
| 327 |
+
|
| 328 |
+
def run_data_collection(sources, queries, limits):
|
| 329 |
+
"""Orchestre la collecte de données depuis les sources sélectionnées."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
st.session_state.bot_status = "En cours d'exécution"
|
|
|
|
| 331 |
|
| 332 |
+
# Nettoyage de l'état précédent avant de démarrer
|
| 333 |
+
st.session_state.qa_data = []
|
| 334 |
+
st.session_state.total_qa_pairs = 0
|
| 335 |
|
| 336 |
+
check_api_keys()
|
|
|
|
| 337 |
|
| 338 |
enabled_sources = [s for s, enabled in sources.items() if enabled]
|
| 339 |
+
progress_bar = st.progress(0, text="Démarrage de la collecte...")
|
| 340 |
+
|
| 341 |
+
for i, source_name in enumerate(enabled_sources):
|
| 342 |
+
progress_text = f"Collecte depuis {source_name}... ({i+1}/{len(enabled_sources)})"
|
| 343 |
+
progress_bar.progress((i + 1) / len(enabled_sources), text=progress_text)
|
| 344 |
+
|
| 345 |
try:
|
| 346 |
+
if source_name == "GitHub":
|
| 347 |
+
for query in queries["GitHub"].split('\n'):
|
| 348 |
+
if query.strip():
|
| 349 |
+
collect_github_data(query.strip(), limits["GitHub"])
|
|
|
|
|
|
|
| 350 |
elif source_name == "NVD":
|
| 351 |
+
collect_nvd_data(limits["NVD"])
|
| 352 |
+
# Ajouter d'autres sources ici (Kaggle, etc.) de la même manière
|
| 353 |
+
|
| 354 |
except Exception as e:
|
| 355 |
+
logger.error(f"Erreur fatale lors de la collecte depuis {source_name}: {e}")
|
| 356 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
progress_bar.empty()
|
| 358 |
+
st.session_state.bot_status = "Arrêté"
|
| 359 |
+
st.toast("Collecte des données terminée !", icon="🎉")
|
| 360 |
+
|
| 361 |
+
# Forcer le rafraîchissement de la page pour mettre à jour l'onglet statistiques
|
| 362 |
+
time.sleep(2)
|
| 363 |
+
st.rerun()
|
| 364 |
|
| 365 |
def main():
|
| 366 |
+
"""Fonction principale de l'application Streamlit."""
|
| 367 |
+
st.title("🤖 DevSecOps Data Bot")
|
| 368 |
+
st.markdown("Ce bot collecte et enrichit des données DevSecOps depuis diverses sources.")
|
| 369 |
+
|
| 370 |
+
global ia_enricher
|
| 371 |
+
ia_enricher = IAEnricher()
|
| 372 |
|
| 373 |
+
tabs = st.tabs(["▶️ Bot", "📊 Statistiques & Données", "⚙️ Configuration"])
|
| 374 |
|
| 375 |
with tabs[0]:
|
| 376 |
+
st.header("Tableau de bord")
|
| 377 |
col1, col2, col3 = st.columns(3)
|
| 378 |
+
col1.metric("Statut du bot", st.session_state.bot_status)
|
| 379 |
+
col2.metric("Paires Q/R collectées", st.session_state.total_qa_pairs)
|
| 380 |
+
col3.metric("Statut du serveur LLM", st.session_state.server_status)
|
| 381 |
+
|
| 382 |
+
# Placeholder pour les logs en direct
|
| 383 |
+
st.session_state['log_placeholder'] = st.empty()
|
| 384 |
+
|
| 385 |
+
with st.form("collection_form"):
|
| 386 |
+
st.subheader("1. Choisir les sources de données")
|
| 387 |
+
sources = {
|
| 388 |
+
"GitHub": st.checkbox("GitHub (Problèmes de sécurité)", value=True),
|
| 389 |
+
"NVD": st.checkbox("NVD (Vulnérabilités CVE)", value=True),
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
st.subheader("2. Paramètres de la collecte")
|
| 393 |
+
queries = {}
|
| 394 |
+
limits = {}
|
| 395 |
+
|
| 396 |
+
with st.expander("Configuration pour GitHub"):
|
| 397 |
+
queries["GitHub"] = st.text_area("Requêtes GitHub (une par ligne)", "language:python security\ntopic:devsecops vulnerability")
|
| 398 |
+
limits["GitHub"] = st.number_input("Nombre de dépôts par requête", 1, 50, 5)
|
| 399 |
+
|
| 400 |
+
with st.expander("Configuration pour NVD"):
|
| 401 |
+
limits["NVD"] = st.number_input("Nombre de CVE à récupérer", 10, 200, 50)
|
| 402 |
+
|
| 403 |
+
submitted = st.form_submit_button("🚀 Lancer la collecte", type="primary", use_container_width=True)
|
| 404 |
+
|
| 405 |
+
if submitted:
|
| 406 |
+
if st.session_state.bot_status == "En cours d'exécution":
|
| 407 |
+
st.warning("Une collecte est déjà en cours.")
|
| 408 |
+
else:
|
| 409 |
+
run_data_collection(sources, queries, limits)
|
| 410 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
with tabs[1]:
|
| 412 |
+
st.header("Analyse des Données Collectées")
|
| 413 |
if st.session_state.qa_data:
|
| 414 |
df = pd.DataFrame(st.session_state.qa_data)
|
| 415 |
|
| 416 |
st.subheader("Aperçu des données")
|
| 417 |
+
st.dataframe(df)
|
| 418 |
|
| 419 |
st.subheader("Répartition par source")
|
| 420 |
+
source_counts = df['source'].apply(lambda x: x.split('_')[0]).value_counts()
|
| 421 |
+
fig_source = px.bar(source_counts, x=source_counts.index, y=source_counts.values,
|
| 422 |
+
labels={'x': 'Source', 'y': 'Nombre'}, title="Nombre de paires Q/R par source")
|
| 423 |
st.plotly_chart(fig_source, use_container_width=True)
|
| 424 |
|
| 425 |
+
# Bouton de téléchargement
|
| 426 |
+
json_data = json.dumps(st.session_state.qa_data, indent=2, ensure_ascii=False)
|
| 427 |
+
st.download_button(
|
| 428 |
+
label="📥 Télécharger les données (JSON)",
|
| 429 |
+
data=json_data,
|
| 430 |
+
file_name=f"devsecops_data_{datetime.now().strftime('%Y%m%d')}.json",
|
| 431 |
+
mime="application/json",
|
| 432 |
+
use_container_width=True
|
| 433 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
else:
|
| 435 |
+
st.info("Aucune donnée à afficher. Lancez une collecte depuis l'onglet 'Bot'.")
|
| 436 |
+
|
| 437 |
with tabs[2]:
|
| 438 |
st.header("Configuration Avancée")
|
| 439 |
+
st.subheader("Gestion du serveur LLM local")
|
| 440 |
+
st.warning("⚠️ Attention : La gestion du serveur est expérimentale sur les conteneurs.")
|
| 441 |
|
| 442 |
llm_col1, llm_col2 = st.columns(2)
|
| 443 |
+
if llm_col1.button("Démarrer le serveur LLM", use_container_width=True):
|
| 444 |
+
start_llm_server()
|
| 445 |
+
st.rerun()
|
| 446 |
+
|
| 447 |
+
if llm_col2.button("Arrêter le serveur LLM", type="secondary", use_container_width=True):
|
| 448 |
+
stop_llm_server()
|
| 449 |
+
st.rerun()
|
| 450 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
st.subheader("Paramètres d'enrichissement IA")
|
| 452 |
+
st.session_state.enable_enrichment = st.toggle("Activer l'enrichissement par IA", value=True)
|
| 453 |
+
st.session_state.min_relevance = st.slider("Score de pertinence minimum", 0, 100, 50)
|
| 454 |
+
st.session_state.temperature = st.slider("Température de l'IA (créativité)", 0.0, 1.5, 0.5)
|
|
|
|
| 455 |
|
| 456 |
if __name__ == "__main__":
|
| 457 |
+
main()
|