Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,52 +1,83 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import pickle
|
| 3 |
import re
|
| 4 |
-
import json
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import networkx as nx
|
| 9 |
from tqdm import tqdm
|
| 10 |
|
|
|
|
| 11 |
def load_json_from_path(path):
|
| 12 |
with open(path, "r", encoding="utf8") as f:
|
| 13 |
obj = json.loads(f.read())
|
| 14 |
|
| 15 |
return obj
|
| 16 |
|
|
|
|
| 17 |
class Visualizer:
|
| 18 |
|
| 19 |
def __init__(self, cache_root="."):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
tree_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_tree_dist.json")
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
map_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_map_dist.json")
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
for
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
asp_dict_path = os.path.join(cache_root, "asp_dict.pkl")
|
| 34 |
with open(asp_dict_path, 'rb') as dictfile:
|
| 35 |
asp_sim = pickle.load(dictfile)
|
| 36 |
lang_list = list(asp_sim.keys())
|
| 37 |
-
|
| 38 |
seen_langs = set()
|
| 39 |
for lang_1 in lang_list:
|
| 40 |
if lang_1 not in seen_langs:
|
| 41 |
seen_langs.add(lang_1)
|
| 42 |
-
|
| 43 |
for index, lang_2 in enumerate(lang_list):
|
| 44 |
if lang_2 not in seen_langs: # it's symmetric
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def visualize(self, distance_type, neighbor, num_neighbors):
|
| 52 |
plt.clf()
|
|
@@ -56,46 +87,30 @@ class Visualizer:
|
|
| 56 |
"Distance to the Lowest Common Ancestor in the Language Family Tree",
|
| 57 |
"Angular Distance between the Frequencies of Phonemes"]
|
| 58 |
if distance_type == "Distance to the Lowest Common Ancestor in the Language Family Tree":
|
| 59 |
-
|
| 60 |
elif distance_type == "Angular Distance between the Frequencies of Phonemes":
|
| 61 |
-
|
| 62 |
elif distance_type == "Physical Distance between Language Centroids on the Globe":
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
distances = list()
|
| 66 |
-
|
| 67 |
-
for lang_1 in distance_measure:
|
| 68 |
-
if lang_1 not in self.iso_codes_to_names:
|
| 69 |
-
continue
|
| 70 |
-
for lang_2 in distance_measure[lang_1]:
|
| 71 |
-
if lang_2 not in self.iso_codes_to_names:
|
| 72 |
-
continue
|
| 73 |
-
distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], distance_measure[lang_1][lang_2]))
|
| 74 |
|
| 75 |
G = nx.Graph()
|
| 76 |
-
min_dist = min(d for _, _, d in distances)
|
| 77 |
-
max_dist = max(d for _, _, d in distances)
|
| 78 |
-
normalized_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances]
|
| 79 |
-
|
| 80 |
d_dist = list()
|
| 81 |
for entity1, entity2, d in tqdm(normalized_distances):
|
| 82 |
if neighbor == entity2 or neighbor == entity1:
|
| 83 |
-
|
| 84 |
-
d_dist.append(d)
|
| 85 |
thresh = sorted(d_dist)[num_neighbors]
|
| 86 |
neighbors = set()
|
| 87 |
for entity1, entity2, d in tqdm(normalized_distances):
|
| 88 |
-
if d
|
| 89 |
neighbors.add(entity1)
|
| 90 |
neighbors.add(entity2)
|
| 91 |
-
spring_tension = (thresh - d) *
|
| 92 |
G.add_edge(entity1, entity2, weight=spring_tension)
|
| 93 |
neighbors.remove(neighbor)
|
| 94 |
for entity1, entity2, d in tqdm(normalized_distances):
|
| 95 |
if entity2 in neighbors and entity1 in neighbors:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
G.add_edge(entity1, entity2, weight=spring_tension)
|
| 99 |
|
| 100 |
pos = nx.spring_layout(G, weight="weight") # Positions for all nodes
|
| 101 |
edges = G.edges(data=True)
|
|
@@ -106,7 +121,7 @@ class Visualizer:
|
|
| 106 |
# nx.draw_networkx_edges(G, pos, edgelist=edges_not_connected_to_specific_node, edge_color='gray', alpha=0.1, width=1)
|
| 107 |
for u, v, d in edges:
|
| 108 |
if u == neighbor or v == neighbor:
|
| 109 |
-
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): round((thresh - (d['weight'] /
|
| 110 |
nx.draw_networkx_labels(G, pos, font_size=14, font_family='sans-serif', font_color='green')
|
| 111 |
nx.draw_networkx_labels(G, pos, labels={neighbor: neighbor}, font_size=14, font_family='sans-serif', font_color='red')
|
| 112 |
plt.title(f'Graph of {distance_type}')
|
|
@@ -116,7 +131,7 @@ class Visualizer:
|
|
| 116 |
|
| 117 |
|
| 118 |
if __name__ == '__main__':
|
| 119 |
-
vis = Visualizer(cache_root="
|
| 120 |
text_selection = [f"{vis.iso_codes_to_names[iso_code]}" for iso_code in vis.iso_codes_to_names]
|
| 121 |
iface = gr.Interface(fn=vis.visualize,
|
| 122 |
inputs=[gr.Dropdown(["Physical Distance between Language Centroids on the Globe",
|
|
|
|
| 1 |
+
import json
|
| 2 |
import os
|
| 3 |
import pickle
|
| 4 |
import re
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import networkx as nx
|
| 9 |
from tqdm import tqdm
|
| 10 |
|
| 11 |
+
|
| 12 |
def load_json_from_path(path):
|
| 13 |
with open(path, "r", encoding="utf8") as f:
|
| 14 |
obj = json.loads(f.read())
|
| 15 |
|
| 16 |
return obj
|
| 17 |
|
| 18 |
+
|
| 19 |
class Visualizer:
|
| 20 |
|
| 21 |
def __init__(self, cache_root="."):
|
| 22 |
+
self.iso_codes_to_names = load_json_from_path(os.path.join(cache_root, "iso_to_fullname.json"))
|
| 23 |
+
for code in self.iso_codes_to_names:
|
| 24 |
+
self.iso_codes_to_names[code] = re.sub("\(.*?\)", "", self.iso_codes_to_names[code])
|
| 25 |
+
|
| 26 |
tree_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_tree_dist.json")
|
| 27 |
+
tree_dist = load_json_from_path(tree_lookup_path)
|
| 28 |
+
distances = list()
|
| 29 |
+
for lang_1 in tree_dist:
|
| 30 |
+
if lang_1 not in self.iso_codes_to_names:
|
| 31 |
+
continue
|
| 32 |
+
for lang_2 in tree_dist[lang_1]:
|
| 33 |
+
if lang_2 not in self.iso_codes_to_names:
|
| 34 |
+
continue
|
| 35 |
+
if lang_1 != lang_2:
|
| 36 |
+
distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], tree_dist[lang_1][lang_2]))
|
| 37 |
+
min_dist = min(d for _, _, d in distances)
|
| 38 |
+
max_dist = max(d for _, _, d in distances)
|
| 39 |
+
self.tree_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances]
|
| 40 |
|
| 41 |
map_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_map_dist.json")
|
| 42 |
+
map_dist = load_json_from_path(map_lookup_path)
|
| 43 |
+
distances = list()
|
| 44 |
+
for lang_1 in map_dist:
|
| 45 |
+
if lang_1 not in self.iso_codes_to_names:
|
| 46 |
+
continue
|
| 47 |
+
for lang_2 in map_dist[lang_1]:
|
| 48 |
+
if lang_2 not in self.iso_codes_to_names:
|
| 49 |
+
continue
|
| 50 |
+
if lang_1 != lang_2:
|
| 51 |
+
distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], map_dist[lang_1][lang_2]))
|
| 52 |
+
min_dist = min(d for _, _, d in distances)
|
| 53 |
+
max_dist = max(d for _, _, d in distances)
|
| 54 |
+
self.map_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances]
|
| 55 |
|
| 56 |
asp_dict_path = os.path.join(cache_root, "asp_dict.pkl")
|
| 57 |
with open(asp_dict_path, 'rb') as dictfile:
|
| 58 |
asp_sim = pickle.load(dictfile)
|
| 59 |
lang_list = list(asp_sim.keys())
|
| 60 |
+
asp_dist = dict()
|
| 61 |
seen_langs = set()
|
| 62 |
for lang_1 in lang_list:
|
| 63 |
if lang_1 not in seen_langs:
|
| 64 |
seen_langs.add(lang_1)
|
| 65 |
+
asp_dist[lang_1] = dict()
|
| 66 |
for index, lang_2 in enumerate(lang_list):
|
| 67 |
if lang_2 not in seen_langs: # it's symmetric
|
| 68 |
+
asp_dist[lang_1][lang_2] = 1 - asp_sim[lang_1][index]
|
| 69 |
+
distances = list()
|
| 70 |
+
for lang_1 in asp_dist:
|
| 71 |
+
if lang_1 not in self.iso_codes_to_names:
|
| 72 |
+
continue
|
| 73 |
+
for lang_2 in asp_dist[lang_1]:
|
| 74 |
+
if lang_2 not in self.iso_codes_to_names:
|
| 75 |
+
continue
|
| 76 |
+
if lang_1 != lang_2:
|
| 77 |
+
distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], asp_dist[lang_1][lang_2]))
|
| 78 |
+
min_dist = min(d for _, _, d in distances)
|
| 79 |
+
max_dist = max(d for _, _, d in distances)
|
| 80 |
+
self.asp_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances]
|
| 81 |
|
| 82 |
def visualize(self, distance_type, neighbor, num_neighbors):
|
| 83 |
plt.clf()
|
|
|
|
| 87 |
"Distance to the Lowest Common Ancestor in the Language Family Tree",
|
| 88 |
"Angular Distance between the Frequencies of Phonemes"]
|
| 89 |
if distance_type == "Distance to the Lowest Common Ancestor in the Language Family Tree":
|
| 90 |
+
normalized_distances = self.tree_distances
|
| 91 |
elif distance_type == "Angular Distance between the Frequencies of Phonemes":
|
| 92 |
+
normalized_distances = self.asp_distances
|
| 93 |
elif distance_type == "Physical Distance between Language Centroids on the Globe":
|
| 94 |
+
normalized_distances = self.map_distances
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
G = nx.Graph()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
d_dist = list()
|
| 98 |
for entity1, entity2, d in tqdm(normalized_distances):
|
| 99 |
if neighbor == entity2 or neighbor == entity1:
|
| 100 |
+
d_dist.append(d)
|
|
|
|
| 101 |
thresh = sorted(d_dist)[num_neighbors]
|
| 102 |
neighbors = set()
|
| 103 |
for entity1, entity2, d in tqdm(normalized_distances):
|
| 104 |
+
if d <= thresh and (neighbor == entity2 or neighbor == entity1) and len(neighbors) < num_neighbors + 1:
|
| 105 |
neighbors.add(entity1)
|
| 106 |
neighbors.add(entity2)
|
| 107 |
+
spring_tension = (thresh - d) * 100 # for vis purposes
|
| 108 |
G.add_edge(entity1, entity2, weight=spring_tension)
|
| 109 |
neighbors.remove(neighbor)
|
| 110 |
for entity1, entity2, d in tqdm(normalized_distances):
|
| 111 |
if entity2 in neighbors and entity1 in neighbors:
|
| 112 |
+
spring_tension = thresh - d
|
| 113 |
+
G.add_edge(entity1, entity2, weight=spring_tension)
|
|
|
|
| 114 |
|
| 115 |
pos = nx.spring_layout(G, weight="weight") # Positions for all nodes
|
| 116 |
edges = G.edges(data=True)
|
|
|
|
| 121 |
# nx.draw_networkx_edges(G, pos, edgelist=edges_not_connected_to_specific_node, edge_color='gray', alpha=0.1, width=1)
|
| 122 |
for u, v, d in edges:
|
| 123 |
if u == neighbor or v == neighbor:
|
| 124 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): round((thresh - (d['weight'] / 100)) * 10, 2)}, font_color="red", alpha=0.4) # reverse modifications
|
| 125 |
nx.draw_networkx_labels(G, pos, font_size=14, font_family='sans-serif', font_color='green')
|
| 126 |
nx.draw_networkx_labels(G, pos, labels={neighbor: neighbor}, font_size=14, font_family='sans-serif', font_color='red')
|
| 127 |
plt.title(f'Graph of {distance_type}')
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
if __name__ == '__main__':
|
| 134 |
+
vis = Visualizer(cache_root="Preprocessing/multilinguality")
|
| 135 |
text_selection = [f"{vis.iso_codes_to_names[iso_code]}" for iso_code in vis.iso_codes_to_names]
|
| 136 |
iface = gr.Interface(fn=vis.visualize,
|
| 137 |
inputs=[gr.Dropdown(["Physical Distance between Language Centroids on the Globe",
|