Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,7 +9,6 @@ import nltk
|
|
| 9 |
# Download the required NLTK data
|
| 10 |
nltk.download('punkt')
|
| 11 |
nltk.download('punkt_tab')
|
| 12 |
-
|
| 13 |
# Paths to your files
|
| 14 |
faiss_path = "manual_chunked_faiss_index_500.bin"
|
| 15 |
manual_path = "ubuntu_manual.txt"
|
|
@@ -52,7 +51,7 @@ except Exception as e:
|
|
| 52 |
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 53 |
|
| 54 |
# OpenAI API key
|
| 55 |
-
openai.api_key = 'sk-proj-
|
| 56 |
|
| 57 |
# Function to create embeddings
|
| 58 |
def embed_text(text_list):
|
|
@@ -79,6 +78,11 @@ def retrieve_chunks(query, k=5):
|
|
| 79 |
relevant_chunks = [manual_chunks[i] for i in valid_indices]
|
| 80 |
return relevant_chunks, distances, indices
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
# Function to perform RAG: Retrieve chunks and generate a response
|
| 83 |
def rag_response(query, k=5, max_tokens=150):
|
| 84 |
try:
|
|
@@ -87,8 +91,15 @@ def rag_response(query, k=5, max_tokens=150):
|
|
| 87 |
if not relevant_chunks:
|
| 88 |
return "Sorry, I couldn't find relevant information.", distances, indices
|
| 89 |
|
| 90 |
-
|
|
|
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
# Generate response using OpenAI API
|
| 93 |
response = openai.ChatCompletion.create(
|
| 94 |
model="gpt-3.5-turbo",
|
|
|
|
| 9 |
# Download the required NLTK data
|
| 10 |
nltk.download('punkt')
|
| 11 |
nltk.download('punkt_tab')
|
|
|
|
| 12 |
# Paths to your files
|
| 13 |
faiss_path = "manual_chunked_faiss_index_500.bin"
|
| 14 |
manual_path = "ubuntu_manual.txt"
|
|
|
|
| 51 |
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 52 |
|
| 53 |
# OpenAI API key
|
| 54 |
+
openai.api_key = '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'
|
| 55 |
|
| 56 |
# Function to create embeddings
|
| 57 |
def embed_text(text_list):
|
|
|
|
| 78 |
relevant_chunks = [manual_chunks[i] for i in valid_indices]
|
| 79 |
return relevant_chunks, distances, indices
|
| 80 |
|
| 81 |
+
# Function to truncate long inputs
|
| 82 |
+
def truncate_input(text, max_length=16385):
|
| 83 |
+
tokens = tokenizer.encode(text, truncation=True, max_length=max_length, return_tensors="pt")
|
| 84 |
+
return tokens
|
| 85 |
+
|
| 86 |
# Function to perform RAG: Retrieve chunks and generate a response
|
| 87 |
def rag_response(query, k=5, max_tokens=150):
|
| 88 |
try:
|
|
|
|
| 91 |
if not relevant_chunks:
|
| 92 |
return "Sorry, I couldn't find relevant information.", distances, indices
|
| 93 |
|
| 94 |
+
# Combine the query with retrieved chunks
|
| 95 |
+
augmented_input = query + "\n\n" + "\n\n".join(relevant_chunks)
|
| 96 |
|
| 97 |
+
# Truncate the input if it exceeds token limits
|
| 98 |
+
input_tokens = tokenizer.encode(augmented_input, return_tensors="pt")
|
| 99 |
+
if input_tokens.shape[1] > 16385:
|
| 100 |
+
# Truncate to fit within the model's maximum input length
|
| 101 |
+
augmented_input = tokenizer.decode(input_tokens[0, :16385])
|
| 102 |
+
|
| 103 |
# Generate response using OpenAI API
|
| 104 |
response = openai.ChatCompletion.create(
|
| 105 |
model="gpt-3.5-turbo",
|