Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import faiss
|
| 3 |
import numpy as np
|
|
@@ -5,12 +7,13 @@ import openai
|
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
from nltk.tokenize import sent_tokenize
|
| 7 |
import nltk
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Download the required NLTK data
|
| 10 |
nltk.download('punkt')
|
| 11 |
-
nltk.download('punkt_tab')
|
| 12 |
|
| 13 |
-
# Paths
|
| 14 |
faiss_path = "manual_chunked_faiss_index_500.bin"
|
| 15 |
manual_path = "ubuntu_manual.txt"
|
| 16 |
|
|
@@ -48,17 +51,19 @@ try:
|
|
| 48 |
except Exception as e:
|
| 49 |
raise RuntimeError(f"Failed to load FAISS index: {e}")
|
| 50 |
|
| 51 |
-
# Load
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
# OpenAI API key
|
| 55 |
-
openai.api_key = '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'
|
| 56 |
|
| 57 |
# Function to create embeddings
|
| 58 |
def embed_text(text_list):
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Function to retrieve relevant chunks for a user query
|
| 64 |
def retrieve_chunks(query, k=5):
|
|
@@ -66,45 +71,44 @@ def retrieve_chunks(query, k=5):
|
|
| 66 |
|
| 67 |
try:
|
| 68 |
distances, indices = index.search(query_embedding, k=k)
|
| 69 |
-
print("
|
| 70 |
-
print("
|
| 71 |
except Exception as e:
|
| 72 |
raise RuntimeError(f"FAISS search failed: {e}")
|
| 73 |
-
|
| 74 |
if len(indices[0]) == 0:
|
| 75 |
return []
|
| 76 |
|
| 77 |
-
# Ensure indices are within bounds
|
| 78 |
valid_indices = [i for i in indices[0] if i < len(manual_chunks)]
|
| 79 |
if not valid_indices:
|
| 80 |
return []
|
| 81 |
|
| 82 |
-
# Retrieve relevant chunks
|
| 83 |
relevant_chunks = [manual_chunks[i] for i in valid_indices]
|
| 84 |
return relevant_chunks
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# Function to truncate long inputs
|
| 87 |
def truncate_input(text, max_length=512):
|
| 88 |
-
|
| 89 |
-
return
|
| 90 |
|
| 91 |
# Function to perform RAG: Retrieve chunks and generate a response
|
| 92 |
def rag_response(query, k=5, max_new_tokens=150):
|
| 93 |
try:
|
| 94 |
-
# Step 1: Retrieve relevant chunks
|
| 95 |
relevant_chunks = retrieve_chunks(query, k=k)
|
| 96 |
|
| 97 |
if not relevant_chunks:
|
| 98 |
return "Sorry, I couldn't find relevant information."
|
| 99 |
|
| 100 |
-
# Step 2: Combine the query with retrieved chunks
|
| 101 |
augmented_input = query + "\n" + "\n".join(relevant_chunks)
|
| 102 |
|
| 103 |
-
# Truncate and encode the input
|
| 104 |
inputs = truncate_input(augmented_input)
|
| 105 |
|
| 106 |
# Generate response
|
| 107 |
-
outputs = generator_model.generate(inputs, max_new_tokens=max_new_tokens)
|
| 108 |
generated_text = generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 109 |
|
| 110 |
return generated_text
|
|
@@ -128,4 +132,3 @@ if __name__ == "__main__":
|
|
| 128 |
|
| 129 |
|
| 130 |
|
| 131 |
-
|
|
|
|
| 1 |
+
|
| 2 |
+
# OpenAI API key
|
| 3 |
import gradio as gr
|
| 4 |
import faiss
|
| 5 |
import numpy as np
|
|
|
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from nltk.tokenize import sent_tokenize
|
| 9 |
import nltk
|
| 10 |
+
from transformers import AutoTokenizer, AutoModel
|
| 11 |
+
import torch
|
| 12 |
|
| 13 |
# Download the required NLTK data
|
| 14 |
nltk.download('punkt')
|
|
|
|
| 15 |
|
| 16 |
+
# Paths to your files
|
| 17 |
faiss_path = "manual_chunked_faiss_index_500.bin"
|
| 18 |
manual_path = "ubuntu_manual.txt"
|
| 19 |
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
raise RuntimeError(f"Failed to load FAISS index: {e}")
|
| 53 |
|
| 54 |
+
# Load the tokenizer and model for embeddings
|
| 55 |
+
embedding_tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
|
| 56 |
+
embedding_model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
|
| 57 |
+
|
| 58 |
|
|
|
|
|
|
|
| 59 |
|
| 60 |
# Function to create embeddings
|
| 61 |
def embed_text(text_list):
|
| 62 |
+
inputs = embedding_tokenizer(text_list, padding=True, truncation=True, return_tensors="pt")
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
outputs = embedding_model(**inputs)
|
| 65 |
+
embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy() # Use the CLS token representation
|
| 66 |
+
return embeddings
|
| 67 |
|
| 68 |
# Function to retrieve relevant chunks for a user query
|
| 69 |
def retrieve_chunks(query, k=5):
|
|
|
|
| 71 |
|
| 72 |
try:
|
| 73 |
distances, indices = index.search(query_embedding, k=k)
|
| 74 |
+
print("Distances:", distances)
|
| 75 |
+
print("Indices:", indices)
|
| 76 |
except Exception as e:
|
| 77 |
raise RuntimeError(f"FAISS search failed: {e}")
|
| 78 |
+
|
| 79 |
if len(indices[0]) == 0:
|
| 80 |
return []
|
| 81 |
|
|
|
|
| 82 |
valid_indices = [i for i in indices[0] if i < len(manual_chunks)]
|
| 83 |
if not valid_indices:
|
| 84 |
return []
|
| 85 |
|
|
|
|
| 86 |
relevant_chunks = [manual_chunks[i] for i in valid_indices]
|
| 87 |
return relevant_chunks
|
| 88 |
|
| 89 |
+
# Load the tokenizer and model for generation
|
| 90 |
+
generator_tokenizer = AutoTokenizer.from_pretrained("gpt-3.5-turbo") # Replace with correct tokenizer if needed
|
| 91 |
+
generator_model = AutoModel.from_pretrained("gpt-3.5-turbo") # Replace with correct model if needed
|
| 92 |
+
|
| 93 |
# Function to truncate long inputs
|
| 94 |
def truncate_input(text, max_length=512):
|
| 95 |
+
inputs = generator_tokenizer(text, return_tensors="pt", truncation=True, max_length=max_length)
|
| 96 |
+
return inputs
|
| 97 |
|
| 98 |
# Function to perform RAG: Retrieve chunks and generate a response
|
| 99 |
def rag_response(query, k=5, max_new_tokens=150):
|
| 100 |
try:
|
|
|
|
| 101 |
relevant_chunks = retrieve_chunks(query, k=k)
|
| 102 |
|
| 103 |
if not relevant_chunks:
|
| 104 |
return "Sorry, I couldn't find relevant information."
|
| 105 |
|
|
|
|
| 106 |
augmented_input = query + "\n" + "\n".join(relevant_chunks)
|
| 107 |
|
|
|
|
| 108 |
inputs = truncate_input(augmented_input)
|
| 109 |
|
| 110 |
# Generate response
|
| 111 |
+
outputs = generator_model.generate(inputs['input_ids'], max_new_tokens=max_new_tokens)
|
| 112 |
generated_text = generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 113 |
|
| 114 |
return generated_text
|
|
|
|
| 132 |
|
| 133 |
|
| 134 |
|
|
|