Spaces:
Runtime error
Runtime error
ๆธธ้
commited on
Commit
ยท
5cb9c90
1
Parent(s):
c88b5fa
update
Browse files- .DS_Store +0 -0
- app.py +239 -0
- requirements.txt +8 -0
.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import librosa
|
| 5 |
+
import base64
|
| 6 |
+
import io
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
import torchaudio
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
from funasr import AutoModel
|
| 16 |
+
|
| 17 |
+
model = "FunAudioLLM/SenseVoiceSmall"
|
| 18 |
+
model = AutoModel(model=model,
|
| 19 |
+
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
| 20 |
+
vad_kwargs={"max_single_segment_time": 30000},
|
| 21 |
+
hub="hf",
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
import re
|
| 25 |
+
|
| 26 |
+
emo_dict = {
|
| 27 |
+
"<|HAPPY|>": "๐",
|
| 28 |
+
"<|SAD|>": "๐",
|
| 29 |
+
"<|ANGRY|>": "๐ก",
|
| 30 |
+
"<|NEUTRAL|>": "",
|
| 31 |
+
"<|FEARFUL|>": "๐ฐ",
|
| 32 |
+
"<|DISGUSTED|>": "๐คข",
|
| 33 |
+
"<|SURPRISED|>": "๐ฎ",
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
event_dict = {
|
| 37 |
+
"<|BGM|>": "๐ผ",
|
| 38 |
+
"<|Speech|>": "",
|
| 39 |
+
"<|Applause|>": "๐",
|
| 40 |
+
"<|Laughter|>": "๐",
|
| 41 |
+
"<|Cry|>": "๐ญ",
|
| 42 |
+
"<|Sneeze|>": "๐คง",
|
| 43 |
+
"<|Breath|>": "",
|
| 44 |
+
"<|Cough|>": "๐คง",
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
emoji_dict = {
|
| 48 |
+
"<|nospeech|><|Event_UNK|>": "โ",
|
| 49 |
+
"<|zh|>": "",
|
| 50 |
+
"<|en|>": "",
|
| 51 |
+
"<|yue|>": "",
|
| 52 |
+
"<|ja|>": "",
|
| 53 |
+
"<|ko|>": "",
|
| 54 |
+
"<|nospeech|>": "",
|
| 55 |
+
"<|HAPPY|>": "๐",
|
| 56 |
+
"<|SAD|>": "๐",
|
| 57 |
+
"<|ANGRY|>": "๐ก",
|
| 58 |
+
"<|NEUTRAL|>": "",
|
| 59 |
+
"<|BGM|>": "๐ผ",
|
| 60 |
+
"<|Speech|>": "",
|
| 61 |
+
"<|Applause|>": "๐",
|
| 62 |
+
"<|Laughter|>": "๐",
|
| 63 |
+
"<|FEARFUL|>": "๐ฐ",
|
| 64 |
+
"<|DISGUSTED|>": "๐คข",
|
| 65 |
+
"<|SURPRISED|>": "๐ฎ",
|
| 66 |
+
"<|Cry|>": "๐ญ",
|
| 67 |
+
"<|EMO_UNKNOWN|>": "",
|
| 68 |
+
"<|Sneeze|>": "๐คง",
|
| 69 |
+
"<|Breath|>": "",
|
| 70 |
+
"<|Cough|>": "๐ท",
|
| 71 |
+
"<|Sing|>": "",
|
| 72 |
+
"<|Speech_Noise|>": "",
|
| 73 |
+
"<|withitn|>": "",
|
| 74 |
+
"<|woitn|>": "",
|
| 75 |
+
"<|GBG|>": "",
|
| 76 |
+
"<|Event_UNK|>": "",
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
lang_dict = {
|
| 80 |
+
"<|zh|>": "<|lang|>",
|
| 81 |
+
"<|en|>": "<|lang|>",
|
| 82 |
+
"<|yue|>": "<|lang|>",
|
| 83 |
+
"<|ja|>": "<|lang|>",
|
| 84 |
+
"<|ko|>": "<|lang|>",
|
| 85 |
+
"<|nospeech|>": "<|lang|>",
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"}
|
| 89 |
+
event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท",}
|
| 90 |
+
|
| 91 |
+
def format_str(s):
|
| 92 |
+
for sptk in emoji_dict:
|
| 93 |
+
s = s.replace(sptk, emoji_dict[sptk])
|
| 94 |
+
return s
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def format_str_v2(s):
|
| 98 |
+
sptk_dict = {}
|
| 99 |
+
for sptk in emoji_dict:
|
| 100 |
+
sptk_dict[sptk] = s.count(sptk)
|
| 101 |
+
s = s.replace(sptk, "")
|
| 102 |
+
emo = "<|NEUTRAL|>"
|
| 103 |
+
for e in emo_dict:
|
| 104 |
+
if sptk_dict[e] > sptk_dict[emo]:
|
| 105 |
+
emo = e
|
| 106 |
+
for e in event_dict:
|
| 107 |
+
if sptk_dict[e] > 0:
|
| 108 |
+
s = event_dict[e] + s
|
| 109 |
+
s = s + emo_dict[emo]
|
| 110 |
+
|
| 111 |
+
for emoji in emo_set.union(event_set):
|
| 112 |
+
s = s.replace(" " + emoji, emoji)
|
| 113 |
+
s = s.replace(emoji + " ", emoji)
|
| 114 |
+
return s.strip()
|
| 115 |
+
|
| 116 |
+
def format_str_v3(s):
|
| 117 |
+
def get_emo(s):
|
| 118 |
+
return s[-1] if s[-1] in emo_set else None
|
| 119 |
+
def get_event(s):
|
| 120 |
+
return s[0] if s[0] in event_set else None
|
| 121 |
+
|
| 122 |
+
s = s.replace("<|nospeech|><|Event_UNK|>", "โ")
|
| 123 |
+
for lang in lang_dict:
|
| 124 |
+
s = s.replace(lang, "<|lang|>")
|
| 125 |
+
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
|
| 126 |
+
new_s = " " + s_list[0]
|
| 127 |
+
cur_ent_event = get_event(new_s)
|
| 128 |
+
for i in range(1, len(s_list)):
|
| 129 |
+
if len(s_list[i]) == 0:
|
| 130 |
+
continue
|
| 131 |
+
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
|
| 132 |
+
s_list[i] = s_list[i][1:]
|
| 133 |
+
#else:
|
| 134 |
+
cur_ent_event = get_event(s_list[i])
|
| 135 |
+
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
|
| 136 |
+
new_s = new_s[:-1]
|
| 137 |
+
new_s += s_list[i].strip().lstrip()
|
| 138 |
+
new_s = new_s.replace("The.", " ")
|
| 139 |
+
return new_s.strip()
|
| 140 |
+
|
| 141 |
+
def model_inference(input_wav, language, fs=16000):
|
| 142 |
+
# task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")}
|
| 143 |
+
language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko",
|
| 144 |
+
"nospeech": "nospeech"}
|
| 145 |
+
|
| 146 |
+
# task = "Speech Recognition" if task is None else task
|
| 147 |
+
language = "auto" if len(language) < 1 else language
|
| 148 |
+
selected_language = language_abbr[language]
|
| 149 |
+
# selected_task = task_abbr.get(task)
|
| 150 |
+
|
| 151 |
+
# print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}")
|
| 152 |
+
|
| 153 |
+
if isinstance(input_wav, tuple):
|
| 154 |
+
fs, input_wav = input_wav
|
| 155 |
+
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
|
| 156 |
+
if len(input_wav.shape) > 1:
|
| 157 |
+
input_wav = input_wav.mean(-1)
|
| 158 |
+
if fs != 16000:
|
| 159 |
+
print(f"audio_fs: {fs}")
|
| 160 |
+
resampler = torchaudio.transforms.Resample(fs, 16000)
|
| 161 |
+
input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
|
| 162 |
+
input_wav = resampler(input_wav_t[None, :])[0, :].numpy()
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
merge_vad = True #False if selected_task == "ASR" else True
|
| 166 |
+
print(f"language: {language}, merge_vad: {merge_vad}")
|
| 167 |
+
text = model.generate(input=input_wav,
|
| 168 |
+
cache={},
|
| 169 |
+
language=language,
|
| 170 |
+
use_itn=True,
|
| 171 |
+
batch_size_s=500, merge_vad=merge_vad)
|
| 172 |
+
|
| 173 |
+
print(text)
|
| 174 |
+
text = text[0]["text"]
|
| 175 |
+
text = format_str_v3(text)
|
| 176 |
+
|
| 177 |
+
print(text)
|
| 178 |
+
|
| 179 |
+
return text
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
audio_examples = [
|
| 183 |
+
["example/zh.mp3", "zh"],
|
| 184 |
+
["example/yue.mp3", "yue"],
|
| 185 |
+
["example/en.mp3", "en"],
|
| 186 |
+
["example/ja.mp3", "ja"],
|
| 187 |
+
["example/ko.mp3", "ko"],
|
| 188 |
+
["example/emo_1.wav", "auto"],
|
| 189 |
+
["example/emo_2.wav", "auto"],
|
| 190 |
+
["example/emo_3.wav", "auto"],
|
| 191 |
+
["example/rich_1.wav", "auto"],
|
| 192 |
+
["example/rich_2.wav", "auto"],
|
| 193 |
+
["example/longwav_1.wav", "auto"],
|
| 194 |
+
["example/longwav_2.wav", "auto"],
|
| 195 |
+
["example/longwav_3.wav", "auto"],
|
| 196 |
+
]
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
html_content = """
|
| 201 |
+
<div>
|
| 202 |
+
<h2 style="font-size: 22px;margin-left: 0px;">Voice Understanding Model: SenseVoice-Small</h2>
|
| 203 |
+
<p style="font-size: 18px;margin-left: 20px;">SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.</p>
|
| 204 |
+
<h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (๐ happy, ๐ก angry/exicting, ๐ sad) and types of sound events (๐ laughter, ๐ผ music, ๐ applause, ๐คง cough&sneeze, ๐ญ cry). The event labels are placed in the front of the text and the emotion are in the back of the text.</p>
|
| 205 |
+
<p style="font-size: 18px;margin-left: 20px;">Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p>
|
| 206 |
+
<h2 style="font-size: 22px;margin-left: 0px;">Repo</h2>
|
| 207 |
+
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/SenseVoice" target="_blank">SenseVoice</a>: multilingual speech understanding model</p>
|
| 208 |
+
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/modelscope/FunASR" target="_blank">FunASR</a>: fundamental speech recognition toolkit</p>
|
| 209 |
+
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/CosyVoice" target="_blank">CosyVoice</a>: high-quality multilingual TTS model</p>
|
| 210 |
+
</div>
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def launch():
|
| 215 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 216 |
+
# gr.Markdown(description)
|
| 217 |
+
gr.HTML(html_content)
|
| 218 |
+
with gr.Row():
|
| 219 |
+
with gr.Column():
|
| 220 |
+
audio_inputs = gr.Audio(label="Upload audio or use the microphone")
|
| 221 |
+
|
| 222 |
+
with gr.Accordion("Configuration"):
|
| 223 |
+
language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
|
| 224 |
+
value="auto",
|
| 225 |
+
label="Language")
|
| 226 |
+
fn_button = gr.Button("Start", variant="primary")
|
| 227 |
+
text_outputs = gr.Textbox(label="Results")
|
| 228 |
+
gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20)
|
| 229 |
+
|
| 230 |
+
fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs)
|
| 231 |
+
|
| 232 |
+
demo.launch()
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if __name__ == "__main__":
|
| 236 |
+
# iface.launch()
|
| 237 |
+
launch()
|
| 238 |
+
|
| 239 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.13
|
| 2 |
+
torchaudio
|
| 3 |
+
modelscope
|
| 4 |
+
huggingface
|
| 5 |
+
huggingface_hub
|
| 6 |
+
funasr>=1.1.2
|
| 7 |
+
numpy<=1.26.4
|
| 8 |
+
gradio
|