Spaces:
Running
on
Zero
Running
on
Zero
| from functools import reduce, partial | |
| from packaging import version | |
| from einops import rearrange, repeat | |
| from einops.layers.torch import Rearrange | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn, einsum | |
| from torch.cuda.amp import autocast | |
| from typing import Callable, Literal | |
| try: | |
| from flash_attn import flash_attn_func, flash_attn_kvpacked_func | |
| except ImportError as e: | |
| print(e) | |
| print('flash_attn not installed, disabling Flash Attention') | |
| flash_attn_kvpacked_func = None | |
| flash_attn_func = None | |
| try: | |
| import natten | |
| except ImportError: | |
| natten = None | |
| def checkpoint(function, *args, **kwargs): | |
| kwargs.setdefault("use_reentrant", False) | |
| return torch.utils.checkpoint.checkpoint(function, *args, **kwargs) | |
| # Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License | |
| # License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt | |
| def create_causal_mask(i, j, device): | |
| return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) | |
| def or_reduce(masks): | |
| head, *body = masks | |
| for rest in body: | |
| head = head | rest | |
| return head | |
| # positional embeddings | |
| class AbsolutePositionalEmbedding(nn.Module): | |
| def __init__(self, dim, max_seq_len): | |
| super().__init__() | |
| self.scale = dim ** -0.5 | |
| self.max_seq_len = max_seq_len | |
| self.emb = nn.Embedding(max_seq_len, dim) | |
| def forward(self, x, pos = None, seq_start_pos = None): | |
| seq_len, device = x.shape[1], x.device | |
| assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' | |
| if pos is None: | |
| pos = torch.arange(seq_len, device = device) | |
| if seq_start_pos is not None: | |
| pos = (pos - seq_start_pos[..., None]).clamp(min = 0) | |
| pos_emb = self.emb(pos) | |
| pos_emb = pos_emb * self.scale | |
| return pos_emb | |
| class ScaledSinusoidalEmbedding(nn.Module): | |
| def __init__(self, dim, theta = 10000): | |
| super().__init__() | |
| assert (dim % 2) == 0, 'dimension must be divisible by 2' | |
| self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) | |
| half_dim = dim // 2 | |
| freq_seq = torch.arange(half_dim).float() / half_dim | |
| inv_freq = theta ** -freq_seq | |
| self.register_buffer('inv_freq', inv_freq, persistent = False) | |
| def forward(self, x, pos = None, seq_start_pos = None): | |
| seq_len, device = x.shape[1], x.device | |
| if pos is None: | |
| pos = torch.arange(seq_len, device = device) | |
| if seq_start_pos is not None: | |
| pos = pos - seq_start_pos[..., None] | |
| emb = einsum('i, j -> i j', pos, self.inv_freq) | |
| emb = torch.cat((emb.sin(), emb.cos()), dim = -1) | |
| return emb * self.scale | |
| class RotaryEmbedding(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| use_xpos = False, | |
| scale_base = 512, | |
| interpolation_factor = 1., | |
| base = 10000, | |
| base_rescale_factor = 1. | |
| ): | |
| super().__init__() | |
| # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning | |
| # has some connection to NTK literature | |
| # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ | |
| base *= base_rescale_factor ** (dim / (dim - 2)) | |
| inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
| self.register_buffer('inv_freq', inv_freq) | |
| assert interpolation_factor >= 1. | |
| self.interpolation_factor = interpolation_factor | |
| if not use_xpos: | |
| self.register_buffer('scale', None) | |
| return | |
| scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) | |
| self.scale_base = scale_base | |
| self.register_buffer('scale', scale) | |
| def forward_from_seq_len(self, seq_len): | |
| device = self.inv_freq.device | |
| t = torch.arange(seq_len, device = device) | |
| return self.forward(t) | |
| def forward(self, t): | |
| device = self.inv_freq.device | |
| t = t.to(torch.float32) | |
| t = t / self.interpolation_factor | |
| freqs = torch.einsum('i , j -> i j', t, self.inv_freq) | |
| freqs = torch.cat((freqs, freqs), dim = -1) | |
| if self.scale is None: | |
| return freqs, 1. | |
| power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base | |
| scale = self.scale ** rearrange(power, 'n -> n 1') | |
| scale = torch.cat((scale, scale), dim = -1) | |
| return freqs, scale | |
| def rotate_half(x): | |
| x = rearrange(x, '... (j d) -> ... j d', j = 2) | |
| x1, x2 = x.unbind(dim = -2) | |
| return torch.cat((-x2, x1), dim = -1) | |
| def apply_rotary_pos_emb(t, freqs, scale = 1): | |
| out_dtype = t.dtype | |
| # cast to float32 if necessary for numerical stability | |
| dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32)) | |
| rot_dim, seq_len = freqs.shape[-1], t.shape[-2] | |
| freqs, t = freqs.to(dtype), t.to(dtype) | |
| freqs = freqs[-seq_len:, :] | |
| if t.ndim == 4 and freqs.ndim == 3: | |
| freqs = rearrange(freqs, 'b n d -> b 1 n d') | |
| # partial rotary embeddings, Wang et al. GPT-J | |
| t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] | |
| t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) | |
| t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype) | |
| return torch.cat((t, t_unrotated), dim = -1) | |
| # norms | |
| class LayerNorm(nn.Module): | |
| def __init__(self, dim, bias=False, fix_scale=False): | |
| """ | |
| bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less | |
| """ | |
| super().__init__() | |
| if fix_scale: | |
| self.register_buffer("gamma", torch.ones(dim)) | |
| else: | |
| self.gamma = nn.Parameter(torch.ones(dim)) | |
| if bias: | |
| self.beta = nn.Parameter(torch.zeros(dim)) | |
| else: | |
| self.register_buffer("beta", torch.zeros(dim)) | |
| def forward(self, x): | |
| return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta) | |
| # feedforward | |
| class GLU(nn.Module): | |
| def __init__( | |
| self, | |
| dim_in, | |
| dim_out, | |
| activation: Callable, | |
| use_conv = False, | |
| conv_kernel_size = 3, | |
| ): | |
| super().__init__() | |
| self.act = activation | |
| self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2)) | |
| self.use_conv = use_conv | |
| def forward(self, x): | |
| if self.use_conv: | |
| x = rearrange(x, 'b n d -> b d n') | |
| x = self.proj(x) | |
| x = rearrange(x, 'b d n -> b n d') | |
| else: | |
| x = self.proj(x) | |
| x, gate = x.chunk(2, dim = -1) | |
| return x * self.act(gate) | |
| class FeedForward(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_out = None, | |
| mult = 4, | |
| no_bias = False, | |
| glu = True, | |
| use_conv = False, | |
| conv_kernel_size = 3, | |
| zero_init_output = True, | |
| ): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| # Default to SwiGLU | |
| activation = nn.SiLU() | |
| dim_out = dim if dim_out is None else dim_out | |
| if glu: | |
| linear_in = GLU(dim, inner_dim, activation) | |
| else: | |
| linear_in = nn.Sequential( | |
| Rearrange('b n d -> b d n') if use_conv else nn.Identity(), | |
| nn.Linear(dim, inner_dim, bias = not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias), | |
| Rearrange('b n d -> b d n') if use_conv else nn.Identity(), | |
| activation | |
| ) | |
| linear_out = nn.Linear(inner_dim, dim_out, bias = not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias) | |
| # init last linear layer to 0 | |
| if zero_init_output: | |
| nn.init.zeros_(linear_out.weight) | |
| if not no_bias: | |
| nn.init.zeros_(linear_out.bias) | |
| self.ff = nn.Sequential( | |
| linear_in, | |
| Rearrange('b d n -> b n d') if use_conv else nn.Identity(), | |
| linear_out, | |
| Rearrange('b n d -> b d n') if use_conv else nn.Identity(), | |
| ) | |
| def forward(self, x): | |
| return self.ff(x) | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_heads = 64, | |
| dim_context = None, | |
| causal = False, | |
| zero_init_output=True, | |
| qk_norm: Literal['l2', 'ln', 'none'] = 'none', | |
| natten_kernel_size = None | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.dim_heads = dim_heads | |
| self.causal = causal | |
| dim_kv = dim_context if dim_context is not None else dim | |
| self.num_heads = dim // dim_heads | |
| self.kv_heads = dim_kv // dim_heads | |
| if dim_context is not None: | |
| self.to_q = nn.Linear(dim, dim, bias=False) | |
| self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False) | |
| else: | |
| self.to_qkv = nn.Linear(dim, dim * 3, bias=False) | |
| self.to_out = nn.Linear(dim, dim, bias=False) | |
| if zero_init_output: | |
| nn.init.zeros_(self.to_out.weight) | |
| self.qk_norm = qk_norm | |
| if self.qk_norm == "ln": | |
| self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6) | |
| self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6) | |
| elif self.qk_norm == 'rns': | |
| self.q_norm = nn.RMSNorm(dim_heads) | |
| self.k_norm = nn.RMSNorm(dim_heads) | |
| # Using 1d neighborhood attention | |
| self.natten_kernel_size = natten_kernel_size | |
| if natten_kernel_size is not None: | |
| return | |
| self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0') | |
| self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None | |
| self.sdp_kwargs = dict( | |
| enable_flash = True, | |
| enable_math = True, | |
| enable_mem_efficient = True | |
| ) | |
| def flash_attn( | |
| self, | |
| q, | |
| k, | |
| v, | |
| mask = None, | |
| causal = None | |
| ): | |
| batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device | |
| kv_heads = k.shape[1] | |
| # Recommended for multi-query single-key-value attention by Tri Dao | |
| # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) | |
| if heads != kv_heads: | |
| # Repeat interleave kv_heads to match q_heads | |
| heads_per_kv_head = heads // kv_heads | |
| k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v)) | |
| if k.ndim == 3: | |
| k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) | |
| if v.ndim == 3: | |
| v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) | |
| causal = self.causal if causal is None else causal | |
| if q_len == 1 and causal: | |
| causal = False | |
| if mask is not None: | |
| assert mask.ndim == 4 | |
| mask = mask.expand(batch, heads, q_len, k_len) | |
| # handle kv cache - this should be bypassable in updated flash attention 2 | |
| if k_len > q_len and causal: | |
| causal_mask = self.create_causal_mask(q_len, k_len, device = device) | |
| if mask is None: | |
| mask = ~causal_mask | |
| else: | |
| mask = mask & ~causal_mask | |
| causal = False | |
| # manually handle causal mask, if another mask was given | |
| row_is_entirely_masked = None | |
| if mask is not None and causal: | |
| causal_mask = self.create_causal_mask(q_len, k_len, device = device) | |
| mask = mask & ~causal_mask | |
| # protect against an entire row being masked out | |
| row_is_entirely_masked = ~mask.any(dim = -1) | |
| mask[..., 0] = mask[..., 0] | row_is_entirely_masked | |
| causal = False | |
| with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs): | |
| out = F.scaled_dot_product_attention( | |
| q, k, v, | |
| attn_mask = mask, | |
| is_causal = causal | |
| ) | |
| # for a row that is entirely masked out, should zero out the output of that row token | |
| if row_is_entirely_masked is not None: | |
| out = out.masked_fill(row_is_entirely_masked[..., None], 0.) | |
| return out | |
| def forward( | |
| self, | |
| x, | |
| context = None, | |
| mask = None, | |
| context_mask = None, | |
| rotary_pos_emb = None, | |
| causal = None | |
| ): | |
| h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None | |
| kv_input = context if has_context else x | |
| if hasattr(self, 'to_q'): | |
| # Use separate linear projections for q and k/v | |
| q = self.to_q(x) | |
| q = rearrange(q, 'b n (h d) -> b h n d', h = h) | |
| k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
| k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v)) | |
| else: | |
| # Use fused linear projection | |
| q, k, v = self.to_qkv(x).chunk(3, dim=-1) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) | |
| # Normalize q and k for cosine sim attention | |
| if self.qk_norm == "l2": | |
| q = F.normalize(q, dim=-1) | |
| k = F.normalize(k, dim=-1) | |
| elif self.qk_norm == "ln": | |
| q = self.q_norm(q) | |
| k = self.k_norm(k) | |
| elif self.qk_norm == "rns": | |
| q = self.q_norm(q) | |
| k = self.k_norm(k) | |
| if rotary_pos_emb is not None and not has_context: | |
| freqs, _ = rotary_pos_emb | |
| q_dtype = q.dtype | |
| k_dtype = k.dtype | |
| q = q.to(torch.float32) | |
| k = k.to(torch.float32) | |
| freqs = freqs.to(torch.float32) | |
| q = apply_rotary_pos_emb(q, freqs) | |
| k = apply_rotary_pos_emb(k, freqs) | |
| q = q.to(q_dtype) | |
| k = k.to(k_dtype) | |
| input_mask = context_mask | |
| if input_mask is None and not has_context: | |
| input_mask = mask | |
| # determine masking | |
| masks = [] | |
| final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account | |
| if input_mask is not None: | |
| input_mask = rearrange(input_mask, 'b j -> b 1 1 j') | |
| masks.append(~input_mask) | |
| # Other masks will be added here later | |
| if len(masks) > 0: | |
| final_attn_mask = ~or_reduce(masks) | |
| n, device = q.shape[-2], q.device | |
| causal = self.causal if causal is None else causal | |
| if n == 1 and causal: | |
| causal = False | |
| if self.natten_kernel_size is not None: | |
| if natten is None: | |
| raise ImportError('natten not installed, please install natten to use neighborhood attention') | |
| dtype_in = q.dtype | |
| q, k, v = map(lambda t: t.to(torch.float32), (q, k, v)) | |
| attn = natten.functional.natten1dqk(q, k, kernel_size = self.natten_kernel_size, dilation=1) | |
| if final_attn_mask is not None: | |
| attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max) | |
| attn = F.softmax(attn, dim=-1, dtype=torch.float32) | |
| out = natten.functional.natten1dav(attn, v, kernel_size = self.natten_kernel_size, dilation=1).to(dtype_in) | |
| # Prioritize Flash Attention 2 | |
| elif self.use_fa_flash: | |
| assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2' | |
| # Flash Attention 2 requires FP16 inputs | |
| fa_dtype_in = q.dtype | |
| q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v)) | |
| out = flash_attn_func(q, k, v, causal = causal) | |
| out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d') | |
| # Fall back to PyTorch implementation | |
| elif self.use_pt_flash: | |
| out = self.flash_attn(q, k, v, causal = causal, mask = final_attn_mask) | |
| else: | |
| # Fall back to custom implementation | |
| if h != kv_h: | |
| # Repeat interleave kv_heads to match q_heads | |
| heads_per_kv_head = h // kv_h | |
| k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v)) | |
| scale = 1. / (q.shape[-1] ** 0.5) | |
| kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' | |
| dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale | |
| i, j, dtype = *dots.shape[-2:], dots.dtype | |
| mask_value = -torch.finfo(dots.dtype).max | |
| if final_attn_mask is not None: | |
| dots = dots.masked_fill(~final_attn_mask, mask_value) | |
| if causal: | |
| causal_mask = self.create_causal_mask(i, j, device = device) | |
| dots = dots.masked_fill(causal_mask, mask_value) | |
| attn = F.softmax(dots, dim=-1, dtype=torch.float32) | |
| attn = attn.type(dtype) | |
| out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) | |
| # merge heads | |
| out = rearrange(out, ' b h n d -> b n (h d)') | |
| # Communicate between heads | |
| # with autocast(enabled = False): | |
| # out_dtype = out.dtype | |
| # out = out.to(torch.float32) | |
| # out = self.to_out(out).to(out_dtype) | |
| out = self.to_out(out) | |
| if mask is not None: | |
| mask = rearrange(mask, 'b n -> b n 1') | |
| out = out.masked_fill(~mask, 0.) | |
| return out | |
| class ConformerModule(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| norm_kwargs = {}, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.in_norm = LayerNorm(dim, **norm_kwargs) | |
| self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False) | |
| self.glu = GLU(dim, dim, nn.SiLU()) | |
| self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False) | |
| self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm | |
| self.swish = nn.SiLU() | |
| self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False) | |
| def forward(self, x): | |
| x = self.in_norm(x) | |
| x = rearrange(x, 'b n d -> b d n') | |
| x = self.pointwise_conv(x) | |
| x = rearrange(x, 'b d n -> b n d') | |
| x = self.glu(x) | |
| x = rearrange(x, 'b n d -> b d n') | |
| x = self.depthwise_conv(x) | |
| x = rearrange(x, 'b d n -> b n d') | |
| x = self.mid_norm(x) | |
| x = self.swish(x) | |
| x = rearrange(x, 'b n d -> b d n') | |
| x = self.pointwise_conv_2(x) | |
| x = rearrange(x, 'b d n -> b n d') | |
| return x | |
| class TransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_heads = 64, | |
| cross_attend = False, | |
| dim_context = None, | |
| global_cond_dim = None, | |
| causal = False, | |
| zero_init_branch_outputs = True, | |
| conformer = False, | |
| layer_ix = -1, | |
| remove_norms = False, | |
| attn_kwargs = {}, | |
| ff_kwargs = {}, | |
| norm_kwargs = {} | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.dim_heads = dim_heads | |
| self.cross_attend = cross_attend | |
| self.dim_context = dim_context | |
| self.causal = causal | |
| self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity() | |
| self.self_attn = Attention( | |
| dim, | |
| dim_heads = dim_heads, | |
| causal = causal, | |
| zero_init_output=zero_init_branch_outputs, | |
| **attn_kwargs | |
| ) | |
| if cross_attend: | |
| self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity() | |
| self.cross_attn = Attention( | |
| dim, | |
| dim_heads = dim_heads, | |
| dim_context=dim_context, | |
| causal = causal, | |
| zero_init_output=zero_init_branch_outputs, | |
| **attn_kwargs | |
| ) | |
| self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity() | |
| self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs) | |
| self.layer_ix = layer_ix | |
| self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None | |
| self.global_cond_dim = global_cond_dim | |
| if global_cond_dim is not None: | |
| self.to_scale_shift_gate = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(global_cond_dim, dim * 6, bias=False) | |
| ) | |
| nn.init.zeros_(self.to_scale_shift_gate[1].weight) | |
| #nn.init.zeros_(self.to_scale_shift_gate_self[1].bias) | |
| def forward( | |
| self, | |
| x, | |
| context = None, | |
| global_cond=None, | |
| mask = None, | |
| context_mask = None, | |
| rotary_pos_emb = None | |
| ): | |
| if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None: | |
| scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1) | |
| # self-attention with adaLN | |
| residual = x | |
| x = self.pre_norm(x) | |
| x = x * (1 + scale_self) + shift_self | |
| x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb) | |
| x = x * torch.sigmoid(1 - gate_self) | |
| x = x + residual | |
| if context is not None: | |
| x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) | |
| if self.conformer is not None: | |
| x = x + self.conformer(x) | |
| # feedforward with adaLN | |
| residual = x | |
| x = self.ff_norm(x) | |
| x = x * (1 + scale_ff) + shift_ff | |
| x = self.ff(x) | |
| x = x * torch.sigmoid(1 - gate_ff) | |
| x = x + residual | |
| else: | |
| x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb) | |
| if context is not None: | |
| x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) | |
| if self.conformer is not None: | |
| x = x + self.conformer(x) | |
| x = x + self.ff(self.ff_norm(x)) | |
| return x | |
| class ContinuousTransformer(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| depth, | |
| *, | |
| dim_in = None, | |
| dim_out = None, | |
| dim_heads = 64, | |
| cross_attend=False, | |
| cond_token_dim=None, | |
| global_cond_dim=None, | |
| causal=False, | |
| rotary_pos_emb=True, | |
| zero_init_branch_outputs=True, | |
| conformer=False, | |
| use_sinusoidal_emb=False, | |
| use_abs_pos_emb=False, | |
| abs_pos_emb_max_length=10000, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.depth = depth | |
| self.causal = causal | |
| self.layers = nn.ModuleList([]) | |
| self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity() | |
| self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity() | |
| if rotary_pos_emb: | |
| self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32)) | |
| else: | |
| self.rotary_pos_emb = None | |
| self.use_sinusoidal_emb = use_sinusoidal_emb | |
| if use_sinusoidal_emb: | |
| self.pos_emb = ScaledSinusoidalEmbedding(dim) | |
| self.use_abs_pos_emb = use_abs_pos_emb | |
| if use_abs_pos_emb: | |
| self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length) | |
| for i in range(depth): | |
| self.layers.append( | |
| TransformerBlock( | |
| dim, | |
| dim_heads = dim_heads, | |
| cross_attend = cross_attend, | |
| dim_context = cond_token_dim, | |
| global_cond_dim = global_cond_dim, | |
| causal = causal, | |
| zero_init_branch_outputs = zero_init_branch_outputs, | |
| conformer=conformer, | |
| layer_ix=i, | |
| **kwargs | |
| ) | |
| ) | |
| def forward( | |
| self, | |
| x, | |
| mask = None, | |
| prepend_embeds = None, | |
| prepend_mask = None, | |
| add_cond = None, | |
| global_cond = None, | |
| return_info = False, | |
| **kwargs | |
| ): | |
| batch, seq, device = *x.shape[:2], x.device | |
| info = { | |
| "hidden_states": [], | |
| } | |
| x = self.project_in(x) | |
| if add_cond is not None: | |
| x = x + add_cond | |
| if prepend_embeds is not None: | |
| prepend_length, prepend_dim = prepend_embeds.shape[1:] | |
| assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension' | |
| x = torch.cat((prepend_embeds, x), dim = -2) | |
| if prepend_mask is not None or mask is not None: | |
| mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool) | |
| prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool) | |
| mask = torch.cat((prepend_mask, mask), dim = -1) | |
| # Attention layers | |
| if self.rotary_pos_emb is not None: | |
| rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1]) | |
| else: | |
| rotary_pos_emb = None | |
| if self.use_sinusoidal_emb or self.use_abs_pos_emb: | |
| x = x + self.pos_emb(x) | |
| # Iterate over the transformer layers | |
| for layer in self.layers: | |
| #x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) | |
| x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) | |
| if return_info: | |
| info["hidden_states"].append(x) | |
| x = self.project_out(x) | |
| if return_info: | |
| return x, info | |
| return x | |