File size: 6,837 Bytes
287959e
f256208
287959e
 
 
 
 
 
 
 
 
 
b6ee133
 
 
 
 
 
 
 
 
 
287959e
8f0a9cd
 
 
287959e
f256208
287959e
 
 
 
 
 
7fca207
 
287959e
4a1d809
287959e
 
f256208
287959e
f256208
 
 
 
 
 
 
7fca207
 
 
 
 
 
 
 
f256208
287959e
 
f256208
287959e
f256208
 
287959e
4a1d809
 
 
287959e
 
f256208
287959e
 
f256208
287959e
 
 
 
8f0a9cd
287959e
 
ec4377c
f256208
ec4377c
 
 
 
 
8f0a9cd
ec4377c
 
f256208
 
 
f852f01
f256208
287959e
f256208
 
287959e
 
f256208
 
287959e
f852f01
b85478b
 
f2a3674
f852f01
 
 
f256208
 
 
f852f01
 
 
 
287959e
8f0a9cd
f256208
 
ec4377c
f852f01
f256208
ec4377c
f256208
f852f01
f256208
f852f01
f256208
ec4377c
 
 
f256208
b6ee133
f852f01
f256208
d049b68
ec4377c
d049b68
f852f01
 
 
 
 
b85478b
 
f2a3674
f852f01
 
f2a3674
f256208
 
f852f01
 
f256208
f852f01
 
 
ec4377c
8f0a9cd
f256208
f852f01
f256208
f852f01
f256208
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import logging
from typing import List, Dict, Any, Union, AsyncGenerator

# LangChain imports
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_cohere import ChatCohere
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.messages import SystemMessage, HumanMessage

# Local imports
from .utils import getconfig, get_auth
from .prompts import system_prompt
from .sources import (
    _process_context,
    _build_messages,
    _parse_citations,
    _extract_sources,
    _create_sources_list,
    clean_citations
)


# Set up logger
logger = logging.getLogger(__name__)

# ---------------------------------------------------------------------
# Configuration and Model Initialization
# ---------------------------------------------------------------------
config = getconfig("params.cfg")
PROVIDER = config.get("generator", "PROVIDER")
MODEL = config.get("generator", "MODEL")
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))
INFERENCE_PROVIDER = config.get("generator", "INFERENCE_PROVIDER")
ORGANIZATION = config.get("generator", "ORGANIZATION")

# Set up authentication for the selected provider
auth_config = get_auth(PROVIDER)

def _get_chat_model():
    """Initialize the appropriate LangChain chat model based on provider"""
    common_params = {"temperature": TEMPERATURE, "max_tokens": MAX_TOKENS}
    
    providers = {
        "openai": lambda: ChatOpenAI(model=MODEL, openai_api_key=auth_config["api_key"], streaming=True, **common_params),
        "anthropic": lambda: ChatAnthropic(model=MODEL, anthropic_api_key=auth_config["api_key"], streaming=True, **common_params),
        "cohere": lambda: ChatCohere(model=MODEL, cohere_api_key=auth_config["api_key"], streaming=True, **common_params),
        "huggingface": lambda: ChatHuggingFace(llm=HuggingFaceEndpoint(
            repo_id=MODEL, 
            huggingfacehub_api_token=auth_config["api_key"], 
            task="text-generation", 
            provider=INFERENCE_PROVIDER,
            server_kwargs={"bill_to": ORGANIZATION},
            temperature=TEMPERATURE, 
            max_new_tokens=MAX_TOKENS, 
            streaming=True
        ))
    }
    
    if PROVIDER not in providers:
        raise ValueError(f"Unsupported provider: {PROVIDER}")
    
    return providers[PROVIDER]()

# Initialize chat model
chat_model = _get_chat_model()


# ---------------------------------------------------------------------
# LLM Call Functions
# ---------------------------------------------------------------------
async def _call_llm(messages: list) -> str:
    """Provider-agnostic LLM call using LangChain (non-streaming)"""
    try:
        response = await chat_model.ainvoke(messages)
        return response.content.strip()
    except Exception as e:
        logger.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
        raise

async def _call_llm_streaming(messages: list) -> AsyncGenerator[str, None]:
    """Provider-agnostic streaming LLM call using LangChain"""
    try:
        async for chunk in chat_model.astream(messages):
            if hasattr(chunk, 'content') and chunk.content:
                yield chunk.content
    except Exception as e:
        logger.exception(f"LLM streaming failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
        yield f"Error: {str(e)}"

# ---------------------------------------------------------------------
# Main Generation Functions
# ---------------------------------------------------------------------
async def generate(query: str, context: Union[str, List[Dict[str, Any]]], chatui_format: bool = False) -> Union[str, Dict[str, Any]]:
    """Generate an answer to a query using provided context through RAG"""
    if not query.strip():
        error_msg = "Query cannot be empty"
        return {"error": error_msg} if chatui_format else f"Error: {error_msg}"
    
    try:
        formatted_context, processed_results = _process_context(context)
        messages = _build_messages(query, formatted_context)
        answer = await _call_llm(messages)
        
        # Clean citations to ensure proper format and remove unwanted sections
        answer = clean_citations(answer)
        
        if chatui_format:
            result = {"answer": answer}
            if processed_results:
                cited_numbers = _parse_citations(answer)
                cited_sources = _extract_sources(processed_results, cited_numbers)
                result["sources"] = _create_sources_list(cited_sources)
            return result
        else:
            return answer
            
    except Exception as e:
        logger.exception("Generation failed")
        error_msg = str(e)
        return {"error": error_msg} if chatui_format else f"Error: {error_msg}"

async def generate_streaming(query: str, context: Union[str, List[Dict[str, Any]]], chatui_format: bool = False) -> AsyncGenerator[Union[str, Dict[str, Any]], None]:
    """Generate a streaming answer to a query using provided context through RAG"""
    if not query.strip():
        error_msg = "Query cannot be empty"
        if chatui_format:
            yield {"event": "error", "data": {"error": error_msg}}
        else:
            yield f"Error: {error_msg}"
        return
    
    try:
        formatted_context, processed_results = _process_context(context)
        messages = _build_messages(system_prompt, query, formatted_context)
        
        # Stream the response and accumulate for citation parsing (filter out any sources that were not cited)
        accumulated_response = ""
        async for chunk in _call_llm_streaming(messages):
            accumulated_response += chunk
            if chatui_format:
                yield {"event": "data", "data": chunk}
            else:
                yield chunk
        
        # Clean citations in the complete response
        cleaned_response = clean_citations(accumulated_response)
        
        # Send sources at the end if available and in ChatUI format
        if chatui_format and processed_results:
            cited_numbers = _parse_citations(cleaned_response)
            cited_sources = _extract_sources(processed_results, cited_numbers)
            sources = _create_sources_list(cited_sources)
            yield {"event": "sources", "data": {"sources": sources}}
        
        # Send END event for ChatUI format
        if chatui_format:
            yield {"event": "end", "data": {}}
        
    except Exception as e:
        logger.exception("Streaming generation failed")
        error_msg = str(e)
        if chatui_format:
            yield {"event": "error", "data": {"error": error_msg}}
        else:
            yield f"Error: {error_msg}"