File size: 8,457 Bytes
1582855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4296589
 
dcd4fb7
4296589
8eb3c54
1582855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a80f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582855
33a80f5
 
 
 
 
 
9f971bd
33a80f5
276b7df
3e2d62e
 
 
1582855
33a80f5
276b7df
 
47d6fa2
 
 
1582855
33a80f5
276b7df
47d6fa2
 
1582855
 
 
 
 
 
 
 
 
 
 
 
4296589
e926953
1582855
 
 
 
 
 
 
22e749b
 
1582855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# EUDR INGESTOR 

import gradio as gr
import os
import logging
from datetime import datetime
from pathlib import Path
from gradio_client import Client, handle_file
import pandas as pd

# Local imports
from .utils import getconfig

config = getconfig("params.cfg")

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

hf_token = os.getenv('HF_TOKEN')
if not hf_token:
    raise ValueError("HF_TOKEN environment variable not found")


# WHISP API configuration
WHISP_API_URL = config.get('whisp', 'WHISP_API_URL', fallback="https://giz-chatfed-whisp.hf.space/")

def get_value(df, colname):
    """Fetch value from WhispAPI-style Column/Value dataframe"""
    if "Column" in df.columns and "Value" in df.columns:
        match = df.loc[df["Column"] == colname, "Value"]
        if not match.empty:
            return match.values[0]
    return "No disponible"

def format_whisp_statistics(df):
    """Format WhispAPI statistics into readable text for RAG context"""
    try:
        # Country code mapping
        country_codes = {
            'HND': 'Honduras', 'GTM': 'Guatemala', 'ECU': 'Ecuador',
            'COL': 'Colombia', 'PER': 'Peru', 'BRA': 'Brasil',
            'BOL': 'Bolivia', 'CRI': 'Costa Rica', 'PAN': 'Panamá',
            'NIC': 'Nicaragua'
        }
        
        country_raw = get_value(df, "Country")
        country = country_codes.get(country_raw, country_raw)
        admin_level = get_value(df, "Admin_Level_1")
        area_raw = get_value(df, "Area")
        
        # Format area
        try:
            area_num = float(area_raw)
            if area_num < 1:
                area_text = f"{area_num:.3f} hectáreas"
            elif area_num < 100:
                area_text = f"{area_num:.2f} hectáreas"
            else:
                area_text = f"{area_num:,.1f} hectáreas"
        except:
            area_text = str(area_raw) if area_raw != "Not available" else "No disponible"

        # Risk assessments
        risk_pcrop = get_value(df, "risk_pcrop")
        risk_acrop = get_value(df, "risk_acrop")
        risk_timber = get_value(df, "risk_timber")
        def_after_2020_raw = get_value(df, "TMF_def_after_2020")
        def_before_2020_raw = get_value(df, "TMF_def_before_2020")

        
        # Helper function to format risk levels with colors/emojis
        def format_risk(risk_val):
            if not risk_val or risk_val in ["Not available", "not available"]:
                return "**No disponible**"
            elif isinstance(risk_val, str):
                risk_lower = risk_val.lower().strip()
                if risk_lower == "low":
                    return "*riesgo bajo*"
                elif risk_lower == "medium":
                    return "*riesgo medio*"
                elif risk_lower == "high":
                    return "*riesgo alto*"
                elif risk_lower == "very high":
                    return "*riesgo muy alto*"
                elif risk_lower == "more_info_needed":
                    return "*Se necesita más información.*"
                else:
                    return f"ℹ️ **{risk_val.title()}**"
            return str(risk_val)

        # Format deforestation data
        def format_deforestation(def_val):
            if not def_val or def_val in ["Not available", "not available"]:
                return "*No disponible*"
            try:
                def_num = float(def_val)
                if def_num == 0:
                    return "* No se detectó deforestación.*"
                elif def_num < 0.1:
                    return f"*{def_num:.3f} hectáreas*"
                else:
                    return f"*{def_num:.2f} hectáreas*"
            except:
                return f"ℹ️ **{def_val}**"

        # Format for RAG context
        context = f"""

**Respuesta generada mediante inteligencia artificíal:** \n\n
        
**Resultados del análisis geográfico**  \n\n
La siguiente información ha sido generada por la [WhispAPI creada por Forest Data Partnership (FDaP)](https://openforis.org/solutions/whisp/).

📍 **Detalles de la ubicación:**

- País: *{country}*
- Región administrativa: *{admin_level}*
- Área total: *{area_text}*

⚠️ **Evaluación del riesgo de deforestación:**
Los niveles de riesgo se basan en patrones históricos, factores ambientales y datos sobre el uso del suelo.

- Cultivos permanentes (Café, cacao, aceite de palma): {format_risk(risk_pcrop)}
- Cultivos anuales (Soja, maíz, arroz): {format_risk(risk_acrop)}
- Extracción de madera: {format_risk(risk_timber)}

🌳 **Datos de deforestación:**

- Deforestación antes de 2020: {format_deforestation(def_after_2020_raw)}
- Deforestación después de 2020: {format_deforestation(def_after_2020_raw)}

Fuente: Forest Data Partnership (FDaP) WhispAPI
Fecha de análisis: {datetime.now().isoformat()}"""

        return context
        
    except Exception as e:
        return f"Error en el análisis geográfico: {str(e)}"

def process_geojson_whisp(file_content: bytes, filename: str) -> tuple[str, dict]:
    """Process GeoJSON file through WHISP API and return formatted context"""
    try:
        
        
        # Create temporary file for WHISP API
        import tempfile
        with tempfile.NamedTemporaryFile(delete=False, suffix='.geojson') as tmp_file:
            tmp_file.write(file_content)
            tmp_file_path = tmp_file.name
        
        try:
            # Call WHISP API with authentication
            client = Client(WHISP_API_URL, hf_token=hf_token)
            result = client.predict(
                file=handle_file(tmp_file_path),
                api_name="/get_statistics"
            )
            
            # Convert result to DataFrame
            df = pd.DataFrame(result['data'], columns=result['headers'])
            
            # Format for RAG context
            formatted_context = format_whisp_statistics(df)
            
            metadata = {
                "analysis_type": "whisp_geojson",
                "country": get_value(df, "Country"),
                "admin_level": get_value(df, "Admin_Level_1"),
                "area": get_value(df, "Area"),
                "risk_levels": {
                    "pcrop": get_value(df, "risk_pcrop"),
                    "acrop": get_value(df, "risk_acrop"),
                    "timber": get_value(df, "risk_timber")
                }
            }
            
            return formatted_context, metadata
            
        finally:
            # Clean up temporary file
            os.unlink(tmp_file_path)
            
    except Exception as e:
        logger.error(f"WHISP API error: {str(e)}")
        raise Exception(f"Failed to process GeoJSON through WHISP API: {str(e)}")

def ingest(file):
    """Main ingestion function - processes GeoJSON file and returns WHISP analysis context"""
    if file is None:
        return "No file uploaded", ""
    
    try:
        with open(file.name, 'rb') as f:
            file_content = f.read()
        
        filename = os.path.basename(file.name)
        
        # Check file extension
        file_extension = os.path.splitext(filename)[1].lower()
        if file_extension not in ['.geojson', '.json']:
            raise ValueError(f"Unsupported file type: {file_extension}. Only GeoJSON files are supported.")
        
        # Process through WHISP API
        context, metadata = process_geojson_whisp(file_content, filename)
        
        logger.info(f"Successfully processed GeoJSON {filename} through WHISP API")
        
        return context
        
    except Exception as e:
        logger.error(f"GeoJSON processing failed: {str(e)}")
        raise Exception(f"Processing failed: {str(e)}")

if __name__ == "__main__":
    ui = gr.Interface(
        fn=ingest,
        inputs=gr.File(
            label="GeoJSON Upload",
            file_types=[".geojson", ".json"]
        ),
        outputs=gr.Textbox(
            label="WHISP Analysis Context",
            lines=15,
            show_copy_button=True
        ),
        title="EUDR Ingestion Module - WHISP API",
        description="Processes GeoJSON files through WHISP API and returns geographic analysis context for RAG pipelines.",
        api_name="ingest"
    )

    ui.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )