File size: 18,741 Bytes
ecc8726
 
1900b1d
 
ecc8726
 
d13d866
ea45e0c
 
99fffc4
d13d866
1900b1d
 
 
d13d866
ecc8726
 
 
de25c1c
019f514
4ef25e0
 
 
f5bde8f
019f514
5e79e19
 
 
1900b1d
019f514
de25c1c
ecc8726
f5bde8f
 
 
ecc8726
 
 
 
 
 
 
f9cf2d2
5e79e19
 
99fffc4
aa7f532
de25c1c
5e79e19
 
de25c1c
ecc8726
 
 
 
de25c1c
5e79e19
ecc8726
 
 
 
 
 
 
 
f5bde8f
ecc8726
 
 
 
 
 
 
 
 
 
 
 
32ef85f
f5bde8f
ecc8726
d13d866
ecc8726
f5bde8f
ecc8726
 
 
 
 
f5bde8f
ecc8726
 
 
 
 
 
 
 
 
 
 
 
 
99fffc4
ecc8726
 
f5bde8f
ecc8726
 
 
 
 
 
 
 
 
 
 
 
 
f5bde8f
f9cf2d2
 
5e79e19
f9cf2d2
5e79e19
 
ecc8726
 
f9cf2d2
ecc8726
 
 
f9cf2d2
ecc8726
 
 
f5bde8f
 
ecc8726
 
1900b1d
ecc8726
 
 
 
1900b1d
 
 
 
ecc8726
1900b1d
 
ecc8726
 
 
 
 
 
 
1900b1d
 
 
ecc8726
 
 
 
 
 
 
 
 
 
 
 
 
 
ea45e0c
 
 
 
f5bde8f
ea45e0c
 
 
 
f5bde8f
ea45e0c
 
 
f5bde8f
8a344c6
f5bde8f
ea45e0c
8a344c6
ea45e0c
 
f5bde8f
 
 
 
 
8a344c6
ea45e0c
8a344c6
ea45e0c
 
 
 
 
 
 
8a344c6
ea45e0c
8a344c6
ea45e0c
8a344c6
f5bde8f
8a344c6
 
 
 
 
 
f5bde8f
8a344c6
 
 
 
 
 
ea45e0c
f5bde8f
ea45e0c
f5bde8f
ea45e0c
201e72b
4f39e33
 
 
 
 
 
f5bde8f
 
 
 
 
4f39e33
f5bde8f
 
 
ea45e0c
f5bde8f
 
 
 
 
 
 
ea45e0c
f5bde8f
 
 
 
 
ea45e0c
f5bde8f
 
 
 
 
 
 
 
ea45e0c
f5bde8f
 
 
 
 
 
 
 
ea45e0c
f5bde8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea45e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de25c1c
 
 
99fffc4
de25c1c
 
 
 
 
ea45e0c
f5bde8f
 
 
ea45e0c
f5bde8f
 
 
 
 
 
 
 
f47ba34
 
 
f5bde8f
ea45e0c
f47ba34
 
 
 
 
 
ea45e0c
201e72b
ea45e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5bde8f
ea45e0c
f47ba34
 
 
 
 
ea45e0c
f5bde8f
ea45e0c
f47ba34
ea45e0c
 
 
 
 
 
 
 
 
 
 
 
f47ba34
ea45e0c
 
 
f47ba34
 
ea45e0c
 
 
f5bde8f
de25c1c
 
 
ea45e0c
de25c1c
ea45e0c
de25c1c
 
ea45e0c
de25c1c
 
ea45e0c
de25c1c
 
 
f47ba34
de25c1c
 
f47ba34
de25c1c
 
 
f47ba34
de25c1c
 
 
 
 
 
 
 
 
ea45e0c
 
de25c1c
 
 
 
 
ea45e0c
de25c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea45e0c
 
 
 
 
 
99fffc4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import tempfile
import os
from models import GraphState
from datetime import datetime
from gradio_client import Client, file
import logging
import dotenv
import httpx
import json
from typing import Generator, Optional

from utils import detect_file_type, convert_context_to_list, merge_state, getconfig
from retriever_adapter import RetrieverAdapter

dotenv.load_dotenv()

logger = logging.getLogger(__name__)

# Load config 
config = getconfig("params.cfg")
RETRIEVER = config.get("retriever", "RETRIEVER")
GENERATOR = config.get("generator", "GENERATOR")
INGESTOR = config.get("ingestor", "INGESTOR")
MAX_CONTEXT_CHARS = int(config.get("general", "MAX_CONTEXT_CHARS"))

# Check if direct output mode is enabled
DIRECT_OUTPUT_ENABLED = config.getboolean("file_processing", "DIRECT_OUTPUT", fallback=False)

retriever_adapter = RetrieverAdapter("params.cfg")


#----------------------------------------
# LANGGRAPH NODE FUNCTIONS
#----------------------------------------

def detect_file_type_node(state: GraphState) -> GraphState:
    """Detect file type and determine workflow"""
    file_type = "unknown"
    workflow_type = "standard"
    
    if state.get("file_content") and state.get("filename"):
        file_type = detect_file_type(state["filename"], state["file_content"])
        
        # Check if direct output mode is enabled
        if DIRECT_OUTPUT_ENABLED:
            logger.info(f"Direct output mode enabled - file will show ingestor results directly")
            workflow_type = "direct_output"
        else:
            # Direct output disabled - use standard workflow
            logger.info(f"Direct output mode disabled - using standard RAG pipeline")
            workflow_type = "standard"
    
    metadata = state.get("metadata", {})
    metadata.update({
        "file_type": file_type,
        "workflow_type": workflow_type,
        "direct_output_enabled": DIRECT_OUTPUT_ENABLED
    })
    
    return {
        "file_type": file_type,
        "workflow_type": workflow_type,
        "metadata": metadata
    }


def ingest_node(state: GraphState) -> GraphState:
    """Process file through appropriate ingestor based on file type"""
    start_time = datetime.now()
    
    if not state.get("file_content") or not state.get("filename"):
        logger.info("No file provided, skipping ingestion")
        return {"ingestor_context": "", "metadata": state.get("metadata", {})}
    
    file_type = state.get("file_type", "unknown")
    logger.info(f"Ingesting {file_type} file: {state['filename']}")
    
    try:
        ingestor_url = INGESTOR 
        logger.info(f"Using ingestor: {ingestor_url}")
        
        client = Client(ingestor_url, hf_token=os.getenv("HF_TOKEN"))
        
        # Create temporary file for upload
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(state["filename"])[1]) as tmp_file:
            tmp_file.write(state["file_content"])
            tmp_file_path = tmp_file.name
        
        try:
            ingestor_context = client.predict(file(tmp_file_path), api_name="/ingest")
            logger.info(f"Ingest result length: {len(ingestor_context) if ingestor_context else 0}")
            
            if isinstance(ingestor_context, str) and ingestor_context.startswith("Error:"):
                raise Exception(ingestor_context)
        finally:
            os.unlink(tmp_file_path)
        
        duration = (datetime.now() - start_time).total_seconds()
        metadata = state.get("metadata", {})
        metadata.update({
            "ingestion_duration": duration,
            "ingestor_context_length": len(ingestor_context) if ingestor_context else 0,
            "ingestion_success": True,
            "ingestor_used": ingestor_url
        })
        
        return {"ingestor_context": ingestor_context, "metadata": metadata}
        
    except Exception as e:
        duration = (datetime.now() - start_time).total_seconds()
        logger.error(f"Ingestion failed: {str(e)}")
        
        metadata = state.get("metadata", {})
        metadata.update({
            "ingestion_duration": duration,
            "ingestion_success": False,
            "ingestion_error": str(e)
        })
        return {"ingestor_context": "", "metadata": metadata}


def direct_output_node(state: GraphState) -> GraphState:
    """
    For files when direct output mode is enabled, return ingestor results directly.
    """
    file_type = state.get('file_type', 'unknown')
    logger.info(f"Direct output mode - returning ingestor results for {file_type} file")
    
    ingestor_context = state.get("ingestor_context", "")
    result = ingestor_context if ingestor_context else "No results from file processing."
    
    metadata = state.get("metadata", {})
    metadata.update({
        "processing_type": "direct_output",
        "result_length": len(result)
    })
    
    return {"result": result, "metadata": metadata}


def retrieve_node(state: GraphState) -> GraphState:
    """Retrieve relevant context using adapter"""
    start_time = datetime.now()
    logger.info(f"Retrieval: {state['query'][:50]}...")
    
    try:
        # Get filters from state (provided by ChatUI or LLM agent)
        filters = state.get("metadata_filters")
        
        context = retriever_adapter.retrieve(
            query=state["query"],
            filters=filters,
            hf_token=os.getenv("HF_TOKEN")
        )
        
        duration = (datetime.now() - start_time).total_seconds()
        metadata = state.get("metadata", {})
        metadata.update({
            "retrieval_duration": duration,
            "context_length": len(context) if context else 0,
            "retrieval_success": True,
            "filters_applied": filters,
            "retriever_config": retriever_adapter.get_metadata()
        })
        
        return {"context": context, "metadata": metadata}
        
    except Exception as e:
        duration = (datetime.now() - start_time).total_seconds()
        logger.error(f"Retrieval failed: {str(e)}")
        
        metadata = state.get("metadata", {})
        metadata.update({
            "retrieval_duration": duration,
            "retrieval_success": False,
            "retrieval_error": str(e)
        })
        return {"context": "", "metadata": metadata}


async def generate_node_streaming(state: GraphState) -> Generator[GraphState, None, None]:
    """Streaming generation using generator's FastAPI endpoint"""
    start_time = datetime.now()
    logger.info(f"Generation (streaming): {state['query'][:50]}...")
    
    try:
        # Combine contexts
        retrieved_context = state.get("context", "")
        ingestor_context = state.get("ingestor_context", "")
        
        logger.info(f"Context lengths - Ingestor: {len(ingestor_context)}, Retrieved: {len(retrieved_context)}")
        
        # Build context list with truncation
        context_list = []
        total_context_chars = 0
        
        if ingestor_context:
            truncated_ingestor = (
                ingestor_context[:MAX_CONTEXT_CHARS] + "...\n[Content truncated due to length]"
                if len(ingestor_context) > MAX_CONTEXT_CHARS
                else ingestor_context
            )
            
            context_list.append({
                "answer": truncated_ingestor,
                "answer_metadata": {
                    "filename": state.get("filename", "Uploaded Document"),
                    "page": "Unknown",
                    "year": "Unknown",
                    "source": "Ingestor"
                }
            })
            total_context_chars += len(truncated_ingestor)
        
        if retrieved_context and total_context_chars < MAX_CONTEXT_CHARS:
            retrieved_list = convert_context_to_list(retrieved_context)
            remaining_chars = MAX_CONTEXT_CHARS - total_context_chars
            
            for item in retrieved_list:
                item_text = item.get("answer", "")
                if len(item_text) <= remaining_chars:
                    context_list.append(item)
                    remaining_chars -= len(item_text)
                else:
                    if remaining_chars > 100:
                        item["answer"] = item_text[:remaining_chars-50] + "...\n[Content truncated]"
                        context_list.append(item)
                    break
        
        final_context_size = sum(len(item.get("answer", "")) for item in context_list)
        logger.info(f"Final context size: {final_context_size} characters (limit: {MAX_CONTEXT_CHARS})")
        
        payload = {"query": state["query"], "context": context_list}
        
        # Normalize generator URL
        generator_url = GENERATOR
        
        # Stream from generator with authentication
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {os.getenv('HF_TOKEN')}"
        }
        
        async with httpx.AsyncClient(timeout=300.0, verify=False) as client:
            async with client.stream(
                "POST",
                f"{generator_url}/generate/stream",
                json=payload,
                headers=headers
            ) as response:
                if response.status_code != 200:
                    raise Exception(f"Generator returned status {response.status_code}")
                
                current_text = ""
                sources = None
                event_type = None
                
                async for line in response.aiter_lines():
                    if not line.strip():
                        continue
                    
                    if line.startswith("event: "):
                        event_type = line[7:].strip()
                        continue
                    elif line.startswith("data: "):
                        data_content = line[6:].strip()
                        
                        if event_type == "data":
                            try:
                                chunk = json.loads(data_content)
                                if isinstance(chunk, str):
                                    current_text += chunk
                            except json.JSONDecodeError:
                                current_text += data_content
                                chunk = data_content
                            
                            metadata = state.get("metadata", {})
                            metadata.update({
                                "generation_duration": (datetime.now() - start_time).total_seconds(),
                                "result_length": len(current_text),
                                "generation_success": True,
                                "streaming": True,
                                "context_chars_used": final_context_size
                            })
                            
                            yield {"result": chunk, "metadata": metadata}
                        
                        elif event_type == "sources":
                            try:
                                sources_data = json.loads(data_content)
                                sources = sources_data.get("sources", [])
                                
                                metadata = state.get("metadata", {})
                                metadata.update({
                                    "sources_received": True,
                                    "sources_count": len(sources)
                                })
                                
                                yield {"sources": sources, "metadata": metadata}
                            except json.JSONDecodeError:
                                logger.warning(f"Failed to parse sources: {data_content}")
                        
                        elif event_type == "end":
                            logger.info("Generator stream ended")
                            break
                        
                        elif event_type == "error":
                            try:
                                error_data = json.loads(data_content)
                                raise Exception(error_data.get("error", "Unknown error"))
                            except json.JSONDecodeError:
                                raise Exception(data_content)
        
    except Exception as e:
        duration = (datetime.now() - start_time).total_seconds()
        logger.error(f"Streaming generation failed: {str(e)}")
        
        metadata = state.get("metadata", {})
        metadata.update({
            "generation_duration": duration,
            "generation_success": False,
            "generation_error": str(e),
            "streaming": True
        })
        yield {"result": f"Error: {str(e)}", "metadata": metadata}


def route_workflow(state: GraphState) -> str:
    """
    Conditional routing based on workflow type after ingestion.
    Returns 'direct_output' when DIRECT_OUTPUT=True, 'standard' otherwise.
    """
    workflow_type = state.get("workflow_type", "standard")
    logger.info(f"Routing to: {workflow_type}")
    return workflow_type


#----------------------------------------
# UNIFIED STREAMING PROCESSOR
#----------------------------------------

async def process_query_streaming(
    query: str, 
    file_upload=None,
    file_content: Optional[bytes] = None,
    filename: Optional[str] = None,
    reports_filter: str = "", 
    sources_filter: str = "", 
    subtype_filter: str = "", 
    year_filter: str = "",
    output_format: str = "structured",
    conversation_context: Optional[str] = None  # NEW: conversation context
):
    """
    Unified streaming function with conversation context support.
    
    Args:
        query: Latest user query
        conversation_context: Optional conversation history for generation context
        ... (other args remain the same)
    """
    # Handle file_upload if provided
    if file_upload is not None:
        try:
            with open(file_upload.name, 'rb') as f:
                file_content = f.read()
            filename = os.path.basename(file_upload.name)
            logger.info(f"File uploaded: {filename}, size: {len(file_content)} bytes")
        except Exception as e:
            logger.error(f"Error reading uploaded file: {str(e)}")
            if output_format == "structured":
                yield {"type": "error", "content": f"Error reading file: {str(e)}"}
            else:
                yield f"Error reading file: {str(e)}"
            return
    
    start_time = datetime.now()
    session_id = f"stream_{start_time.strftime('%Y%m%d_%H%M%S')}"
    
    # Log retrieval strategy
    logger.info(f"Retrieval query: {query[:100]}...")
    if conversation_context:
        logger.info(f"Generation will use conversation context ({len(conversation_context)} chars)")
    
    try:
        # Build initial state
        initial_state = {
            "query": query,  # Use ONLY latest query for retrieval
            "context": "",
            "ingestor_context": "",
            "result": "",
            "sources": [],
            "reports_filter": reports_filter or "",
            "sources_filter": sources_filter or "",
            "subtype_filter": subtype_filter or "",
            "year_filter": year_filter or "",
            "file_content": file_content,
            "filename": filename,
            "file_type": "unknown",
            "workflow_type": "standard",
            "conversation_context": conversation_context,  # Store for generation
            "metadata": {
                "session_id": session_id,
                "start_time": start_time.isoformat(),
                "has_file_attachment": file_content is not None,
                "has_conversation_context": conversation_context is not None
            }
        }
        
        # Execute workflow nodes
        if file_content and filename:
            state = merge_state(initial_state, detect_file_type_node(initial_state))
            state = merge_state(state, ingest_node(state))
            
            workflow_type = route_workflow(state)
            
            if workflow_type == "direct_output":
                final_state = direct_output_node(state)
                if output_format == "structured":
                    yield {"type": "data", "content": final_state["result"]}
                    yield {"type": "end", "content": ""}
                else:
                    yield final_state["result"]
                return
            else:
                # Retrieve using ONLY the latest query
                state = merge_state(state, retrieve_node(state))
        else:
            # No file: retrieve using latest query only
            state = merge_state(initial_state, retrieve_node(initial_state))
        
        # Generate response with streaming
        # The generator can optionally use conversation_context for better responses
        sources_collected = None
        accumulated_response = "" if output_format == "gradio" else None
        
        async for partial_state in generate_node_streaming(state):
            if "result" in partial_state:
                if output_format == "structured":
                    yield {"type": "data", "content": partial_state["result"]}
                else:
                    accumulated_response += partial_state["result"]
                    yield accumulated_response
            
            if "sources" in partial_state:
                sources_collected = partial_state["sources"]
        
        # Format and yield sources
        if sources_collected:
            if output_format == "structured":
                yield {"type": "sources", "content": sources_collected}
            else:
                sources_text = "\n\n**Sources:**\n"
                for i, source in enumerate(sources_collected, 1):
                    if isinstance(source, dict):
                        title = source.get('title', 'Unknown')
                        link = source.get('link', '#')
                        sources_text += f"{i}. [{title}]({link})\n"
                    else:
                        sources_text += f"{i}. {source}\n"
                
                accumulated_response += sources_text
                yield accumulated_response
        
        if output_format == "structured":
            yield {"type": "end", "content": ""}
        
    except Exception as e:
        logger.error(f"Streaming pipeline failed: {str(e)}")
        if output_format == "structured":
            yield {"type": "error", "content": f"Error: {str(e)}"}
        else:
            yield f"Error: {str(e)}"