Spaces:
Running
Running
| import logging | |
| import pathlib | |
| import gradio as gr | |
| import pandas as pd | |
| from gt4sd.algorithms.generation.hugging_face import ( | |
| HuggingFaceCTRLGenerator, | |
| HuggingFaceGenerationAlgorithm, | |
| HuggingFaceGPT2Generator, | |
| HuggingFaceTransfoXLGenerator, | |
| HuggingFaceOpenAIGPTGenerator, | |
| HuggingFaceXLMGenerator, | |
| HuggingFaceXLNetGenerator, | |
| ) | |
| from gt4sd.algorithms.registry import ApplicationsRegistry | |
| logger = logging.getLogger(__name__) | |
| logger.addHandler(logging.NullHandler()) | |
| MODEL_FN = { | |
| "HuggingFaceCTRLGenerator": HuggingFaceCTRLGenerator, | |
| "HuggingFaceGPT2Generator": HuggingFaceGPT2Generator, | |
| "HuggingFaceTransfoXLGenerator": HuggingFaceTransfoXLGenerator, | |
| "HuggingFaceOpenAIGPTGenerator": HuggingFaceOpenAIGPTGenerator, | |
| "HuggingFaceXLMGenerator": HuggingFaceXLMGenerator, | |
| "HuggingFaceXLNetGenerator": HuggingFaceXLNetGenerator, | |
| } | |
| def run_inference( | |
| model_type: str, | |
| prompt: str, | |
| length: float, | |
| temperature: float, | |
| prefix: str, | |
| k: float, | |
| p: float, | |
| repetition_penalty: float, | |
| ): | |
| model = model_type.split("_")[0] | |
| version = model_type.split("_")[1] | |
| if model not in MODEL_FN.keys(): | |
| raise ValueError(f"Model type {model} not supported") | |
| config = MODEL_FN[model]( | |
| algorithm_version=version, | |
| prompt=prompt, | |
| length=length, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| k=k, | |
| p=p, | |
| prefix=prefix, | |
| ) | |
| model = HuggingFaceGenerationAlgorithm(config) | |
| text = list(model.sample(1))[0] | |
| return text | |
| if __name__ == "__main__": | |
| # Preparation (retrieve all available algorithms) | |
| all_algos = ApplicationsRegistry.list_available() | |
| algos = [ | |
| x["algorithm_application"] + "_" + x["algorithm_version"] | |
| for x in list(filter(lambda x: "HuggingFace" in x["algorithm_name"], all_algos)) | |
| ] | |
| # Load metadata | |
| metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
| examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( | |
| "" | |
| ) | |
| print("Examples: ", examples.values.tolist()) | |
| with open(metadata_root.joinpath("article.md"), "r") as f: | |
| article = f.read() | |
| with open(metadata_root.joinpath("description.md"), "r") as f: | |
| description = f.read() | |
| demo = gr.Interface( | |
| fn=run_inference, | |
| title="HuggingFace language models", | |
| inputs=[ | |
| gr.Dropdown( | |
| algos, | |
| label="Language model", | |
| value="HuggingFaceGPT2Generator_gpt2", | |
| ), | |
| gr.Textbox( | |
| label="Text prompt", | |
| placeholder="I'm a stochastic parrot.", | |
| lines=1, | |
| ), | |
| gr.Slider(minimum=5, maximum=100, value=20, label="Maximal length", step=1), | |
| gr.Slider( | |
| minimum=0.6, maximum=1.5, value=1.1, label="Decoding temperature" | |
| ), | |
| gr.Textbox( | |
| label="Prefix", placeholder="Some prefix (before the prompt)", lines=1 | |
| ), | |
| gr.Slider(minimum=2, maximum=500, value=50, label="Top-k", step=1), | |
| gr.Slider(minimum=0.5, maximum=1, value=1.0, label="Decoding-p", step=1), | |
| gr.Slider(minimum=0.5, maximum=5, value=1.0, label="Repetition penalty"), | |
| ], | |
| outputs=gr.Textbox(label="Output"), | |
| article=article, | |
| description=description, | |
| examples=examples.values.tolist(), | |
| ) | |
| demo.launch(debug=True, show_error=True) | |