GVAmaresh
commited on
Commit
·
744370a
1
Parent(s):
956b06c
dev: check working
Browse files- Dockerfile +13 -0
- app.py +142 -0
- requirements.txt +25 -0
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user
|
| 4 |
+
USER user
|
| 5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 6 |
+
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 11 |
+
|
| 12 |
+
COPY --chown=user . /app
|
| 13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModel
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
def mean_pooling(model_output, attention_mask):
|
| 6 |
+
token_embeddings = model_output[
|
| 7 |
+
0
|
| 8 |
+
]
|
| 9 |
+
input_mask_expanded = (
|
| 10 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 11 |
+
)
|
| 12 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
| 13 |
+
input_mask_expanded.sum(1), min=1e-9
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def cosine_similarity(u, v):
|
| 17 |
+
return F.cosine_similarity(u, v, dim=1)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def compare(text1, text2):
|
| 21 |
+
|
| 22 |
+
sentences = [text1, text2]
|
| 23 |
+
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained("dmlls/all-mpnet-base-v2-negation")
|
| 25 |
+
model = AutoModel.from_pretrained("dmlls/all-mpnet-base-v2-negation")
|
| 26 |
+
|
| 27 |
+
encoded_input = tokenizer(
|
| 28 |
+
sentences, padding=True, truncation=True, return_tensors="pt"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
model_output = model(**encoded_input)
|
| 33 |
+
|
| 34 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
|
| 35 |
+
|
| 36 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
| 37 |
+
|
| 38 |
+
similarity_score = cosine_similarity(
|
| 39 |
+
sentence_embeddings[0].unsqueeze(0), sentence_embeddings[1].unsqueeze(0)
|
| 40 |
+
)
|
| 41 |
+
return similarity_score.item()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
#--------------------------------------------------------------------------------------------------------------------
|
| 45 |
+
from fastapi import FastAPI
|
| 46 |
+
|
| 47 |
+
app = FastAPI()
|
| 48 |
+
|
| 49 |
+
@app.get("/")
|
| 50 |
+
def greet_json():
|
| 51 |
+
return {"Hello": "World!"}
|
| 52 |
+
|
| 53 |
+
#--------------------------------------------------------------------------------------------------------------------
|
| 54 |
+
|
| 55 |
+
from transformers import pipeline
|
| 56 |
+
|
| 57 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 58 |
+
|
| 59 |
+
def Summerized_Text(text):
|
| 60 |
+
text = text.strip()
|
| 61 |
+
a = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
| 62 |
+
print(a)
|
| 63 |
+
return a[0]['summary_text']
|
| 64 |
+
|
| 65 |
+
#--------------------------------------------------------------------------------------------------------------------
|
| 66 |
+
|
| 67 |
+
from fastapi.responses import JSONResponse
|
| 68 |
+
from pydantic import BaseModel
|
| 69 |
+
from fastapi import FastAPI
|
| 70 |
+
|
| 71 |
+
class StrRequest(BaseModel):
|
| 72 |
+
text: str
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class CompareRequest(BaseModel):
|
| 76 |
+
summary: str
|
| 77 |
+
text: str
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@app.get("/api/check")
|
| 81 |
+
def check_connection():
|
| 82 |
+
try:
|
| 83 |
+
return JSONResponse(
|
| 84 |
+
{"status": 200, "message": "Message Successfully Sent"}, status_code=200
|
| 85 |
+
)
|
| 86 |
+
except Exception as e:
|
| 87 |
+
print("Error => ", e)
|
| 88 |
+
return JSONResponse({"status": 500, "message": str(e)}, status_code=500)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@app.post("/api/summerized")
|
| 92 |
+
async def get_summerized(request: StrRequest):
|
| 93 |
+
try:
|
| 94 |
+
print(request)
|
| 95 |
+
text = request.text
|
| 96 |
+
if not text:
|
| 97 |
+
return JSONResponse(
|
| 98 |
+
{"status": 422, "message": "Invalid Input"}, status_code=422
|
| 99 |
+
)
|
| 100 |
+
summary = Summerized_Text(text)
|
| 101 |
+
if "No abstract text." in summary:
|
| 102 |
+
return JSONResponse(
|
| 103 |
+
{"status": 500, "message": "No matching text found", "data": "None"}
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
if not summary:
|
| 107 |
+
return JSONResponse(
|
| 108 |
+
{"status": 500, "message": "No matching text found", "data": {}}
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
return JSONResponse(
|
| 112 |
+
{"status": 200, "message": "Matching text found", "data": summary}
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
except Exception as e:
|
| 116 |
+
print("Error => ", e)
|
| 117 |
+
return JSONResponse({"status": 500, "message": str(e)}, status_code=500)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@app.post("/api/compare")
|
| 121 |
+
def compareTexts(request: CompareRequest):
|
| 122 |
+
try:
|
| 123 |
+
text = request.text
|
| 124 |
+
summary = request.summary
|
| 125 |
+
if not summary or not text:
|
| 126 |
+
return JSONResponse(
|
| 127 |
+
{"status": 422, "message": "Invalid Input"}, status_code=422
|
| 128 |
+
)
|
| 129 |
+
value = compare(text, summary)
|
| 130 |
+
return JSONResponse(
|
| 131 |
+
{
|
| 132 |
+
"status": 200,
|
| 133 |
+
"message": "Comparisons made",
|
| 134 |
+
"value": value,
|
| 135 |
+
"text": text,
|
| 136 |
+
"summary": summary,
|
| 137 |
+
}
|
| 138 |
+
)
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print("Error => ", e)
|
| 141 |
+
return JSONResponse({"status": 500, "message": str(e)}, status_code=500)
|
| 142 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
torch
|
| 4 |
+
torchaudio
|
| 5 |
+
tensorflow
|
| 6 |
+
scipy
|
| 7 |
+
websockets
|
| 8 |
+
wsproto
|
| 9 |
+
soundfile
|
| 10 |
+
SpeechRecognition
|
| 11 |
+
pydub
|
| 12 |
+
transformers
|
| 13 |
+
ffmpeg
|
| 14 |
+
librosa
|
| 15 |
+
soundfile
|
| 16 |
+
python-multipart
|
| 17 |
+
matplotlib
|
| 18 |
+
numpy
|
| 19 |
+
google-api-python-client
|
| 20 |
+
google-auth-httplib2
|
| 21 |
+
google-auth-oauthlib
|
| 22 |
+
gdown
|
| 23 |
+
PyPDF2
|
| 24 |
+
tf-keras
|
| 25 |
+
requests
|