Spaces:
Running
Running
File size: 27,686 Bytes
ecc4b02 21b80d7 ecc4b02 21b80d7 ecc4b02 21b80d7 ecc4b02 21b80d7 5916940 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 87e5329 bbd0f3e 87e5329 bbd0f3e 87e5329 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 5916940 c4b8b95 5916940 21b80d7 5916940 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 87e5329 21b80d7 f0a56b8 bbd0f3e 21b80d7 bbd0f3e 21b80d7 f0a56b8 bbd0f3e 21b80d7 bbd0f3e f0a56b8 bbd0f3e f0a56b8 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 6ded7d7 5916940 6ded7d7 364c0c4 bbd0f3e 6ded7d7 364c0c4 5916940 364c0c4 6ded7d7 bbd0f3e 21b80d7 6ded7d7 bbd0f3e 21b80d7 6ded7d7 5916940 6ded7d7 5916940 6ded7d7 5916940 6ded7d7 5916940 6ded7d7 5916940 364c0c4 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 ecc4b02 21b80d7 bbd0f3e 21b80d7 bbd0f3e ecc4b02 bbd0f3e 21b80d7 ecc4b02 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e 21b80d7 bbd0f3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
import os
import time
import re
import requests
import phonenumbers
import pandas as pd
import urllib.parse
from bs4 import BeautifulSoup
import torch
from transformers import (
AutoTokenizer,
AutoModelForTokenClassification,
AutoModelForSeq2SeqLM,
pipeline
)
import gradio as gr
from concurrent.futures import ThreadPoolExecutor, as_completed
from email.message import EmailMessage
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
# ============================
# CONFIG
# ============================
API_KEY = os.environ.get("GOOGLE_API_KEY", "YOUR_GOOGLE_API_KEY")
CX = os.environ.get("GOOGLE_CSE_ID", "YOUR_CSE_ID")
DEFAULT_COUNTRY = "Ghana"
RESULTS_PER_QUERY = int(os.environ.get("RESULTS_PER_QUERY", 4))
MAX_SCRAPE_WORKERS = int(os.environ.get("MAX_SCRAPE_WORKERS", 6))
ALLY_AI_NAME = os.environ.get("ALLY_AI_NAME", "Ally AI")
ALLY_AI_LOGO_URL_DEFAULT = os.environ.get("ALLY_AI_LOGO_URL",
"https://imgur.com/a/lVxnQke")
COUNTRY_TLD_MAP = {"Ghana":"gh","Nigeria":"ng","Kenya":"ke","South Africa":"za","USA":"us","United Kingdom":"uk"}
COUNTRY_REGION_MAP= {"Ghana":"GH","Nigeria":"NG","Kenya":"KE","South Africa":"ZA","USA":"US","United Kingdom":"GB"}
HEADERS = {"User-Agent":"Mozilla/5.0 (X11; Linux x86_64)"}
EMAIL_REGEX = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
# ============================
# MODELS (lightweight & CPU-friendly)
# ============================
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("Device set to use", DEVICE)
# NER model (people/orgs/locs)
ner_model_id = "dslim/bert-base-NER"
ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_id)
ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_id)
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple",
device=0 if DEVICE=="cuda" else -1)
# Summarizer / anonymizer
text_model_id = "google/flan-t5-large"
text_tokenizer = AutoTokenizer.from_pretrained(text_model_id)
text_model = AutoModelForSeq2SeqLM.from_pretrained(text_model_id).to(DEVICE)
# ============================
# TAXONOMY & HELPERS
# ============================
PROFESSION_KEYWORDS = ["lawyer","therapist","doctor","counselor","social worker",
"advocate","psychologist","psychiatrist","consultant","nurse","hotline","gbv"]
PROBLEM_PROFESSION_MAP = {
"rape": ["lawyer","therapist","counselor","doctor"],
"sexual assault": ["lawyer","therapist","counselor"],
"domestic violence": ["lawyer","social worker","therapist"],
"abuse": ["counselor","social worker","therapist","lawyer"],
"trauma": ["therapist","psychologist","psychiatrist"],
"depression": ["therapist","psychologist","doctor"],
"violence": ["lawyer","counselor","social worker"],
}
def get_region_for_country(country: str) -> str:
return COUNTRY_REGION_MAP.get(country, "GH")
def get_tld_for_country(country: str) -> str:
return COUNTRY_TLD_MAP.get(country, "")
def build_country_biased_query(core: str, country: str) -> str:
tld = get_tld_for_country(country)
suffix = f" in {country}"
if tld:
return f"{core}{suffix} site:.{tld} OR {country}"
return f"{core}{suffix}"
def dedup_by_url(items):
seen, out = set(), []
for it in items:
u = it.get("link") or it.get("url")
if u and u not in seen:
seen.add(u)
out.append(it)
return out
# ============================
# SEARCH & SCRAPING
# ============================
def google_search(query, num_results=5):
if not API_KEY or not CX or "YOUR_GOOGLE_API_KEY" in API_KEY or "YOUR_CSE_ID" in CX:
raise RuntimeError("Google API key and CSE ID must be set as environment variables.")
url = "https://www.googleapis.com/customsearch/v1"
params = {"q":query, "key":API_KEY, "cx":CX, "num":num_results}
r = requests.get(url, params=params, timeout=20)
r.raise_for_status()
items = r.json().get("items", []) or []
return [{"title":i.get("title",""), "link":i.get("link",""), "snippet":i.get("snippet","")} for i in items]
def extract_phones(text, region="GH"):
phones = []
for match in phonenumbers.PhoneNumberMatcher(text, region):
try:
phones.append(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.INTERNATIONAL))
except Exception:
pass
return list(set(phones))
def _domain_from_url(url):
try:
return urllib.parse.urlparse(url).netloc
except Exception:
return url
def scrape_contacts(url, region="GH"):
"""
Extended scraping: returns emails, phones, and a guessed 'org' name
extracted from meta tags, headings, or via NER on page text.
"""
try:
res = requests.get(url, headers=HEADERS, timeout=12)
if not res.ok or not res.text:
return {"emails": [], "phones": [], "org": None}
soup = BeautifulSoup(res.text, "html.parser")
# raw text for phone/email/NER
text = soup.get_text(separator=" ")
text = " ".join(text.split())[:300000]
# emails & phones
emails = list(set(EMAIL_REGEX.findall(text)))
phones = extract_phones(text, region)
# try meta og:site_name or twitter site meta
org_name = None
meta_og = soup.find("meta", property="og:site_name") or soup.find("meta", attrs={"name":"og:site_name"})
if meta_og and meta_og.get("content"):
org_name = meta_og.get("content").strip()
# fallback to <title> or first <h1>
if not org_name:
title_tag = soup.find("title")
if title_tag and title_tag.get_text(strip=True):
org_name = title_tag.get_text(strip=True)
if not org_name:
h1 = soup.find("h1")
if h1 and h1.get_text(strip=True):
org_name = h1.get_text(strip=True)
# run NER to find ORG mentions in the page text and prefer that if short and clean
try:
people, orgs, locs = extract_entities(text)
if orgs:
# choose first short/clean org
for o in orgs:
if len(o) > 1 and len(o) < 80:
org_name = o
break
except Exception:
pass
# final fallback: domain
if not org_name:
org_name = _domain_from_url(url)
return {"emails": emails, "phones": phones, "org": org_name}
except Exception as e:
print(f"[scrape error] {url} -> {e}")
return {"emails": [], "phones": [], "org": _domain_from_url(url)}
# ============================
# NER + STORY β PROFESSIONS
# ============================
def extract_entities(text):
if not text:
return [],[],[]
try:
ner_results = ner_pipe(text)
except Exception as e:
print("[ner error]", e)
return [],[],[]
people = [e["word"] for e in ner_results if e.get("entity_group") == "PER"]
orgs = [e["word"] for e in ner_results if e.get("entity_group") == "ORG"]
locs = [e["word"] for e in ner_results if e.get("entity_group") == "LOC"]
return list(set(people)), list(set(orgs)), list(set(locs))
def professions_from_story(story: str):
s = (story or "").lower()
found = set([p for p in PROFESSION_KEYWORDS if p in s])
for prob, profs in PROBLEM_PROFESSION_MAP.items():
if prob in s:
found.update(profs)
if not found:
return ["gbv","counselor"]
order = ["lawyer","therapist","counselor","social worker","psychologist","psychiatrist","doctor","advocate","nurse","hotline","gbv"]
return [p for p in order if p in found]
def build_queries(story: str, country: str):
profs = professions_from_story(story)
cores = []
for p in profs:
if p == "gbv":
cores += ["GBV support organizations", "gender based violence help"]
else:
cores += [f"{p} for GBV", f"{p} for sexual assault", f"{p} near me {p} {country}"]
unique_cores, seen = [], set()
for c in cores:
if c not in seen:
unique_cores.append(c); seen.add(c)
return [build_country_biased_query(core, country) for core in unique_cores], profs
# ============================
# TEXT GEN: anonymize + result summary
# ============================
def anonymize_story(story: str, max_sentences: int = 2):
if not story or not story.strip():
return ""
prompt = (
"Anonymize and shorten the following personal story for contacting professionals. "
"Remove names, exact ages, dates, locations and any identifying details. "
f"Keep only the essential problem and the type of help requested. Output <= {max_sentences} sentences.\n\n"
f"Story: {story}\n\nSummary:"
)
inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = text_model.generate(**inputs, max_new_tokens=120, temperature=0.2)
return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
def generate_summary(query, people, orgs, locs):
prompt = (
"Write a short, empathetic summary of these search results for a person seeking GBV help.\n"
f"Query: {query}\nPeople: {', '.join(people) or 'β'}\nOrgs: {', '.join(orgs) or 'β'}\nLocations: {', '.join(locs) or 'β'}\n\n"
"Explain how the organizations/professionals can help in 3-4 sentences."
)
inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = text_model.generate(**inputs, max_new_tokens=150, temperature=0.7)
return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# ============================
# MAIN PIPELINE
# ============================
def find_professionals_from_story(story, country=DEFAULT_COUNTRY, results_per_query=RESULTS_PER_QUERY):
region = get_region_for_country(country)
queries, profs = build_queries(story, country)
# Search
search_results = []
for q in queries:
try:
items = google_search(q, num_results=results_per_query)
for it in items:
it["query"] = q
search_results.extend(items)
except Exception as e:
print("[search error]", q, e)
search_results = dedup_by_url(search_results)
if not search_results:
return {"summary":"No results found. Try a different country or wording.",
"professionals":[], "queries_used":queries}
# NER on titles/snippets for context
all_people, all_orgs, all_locs = [], [], []
for r in search_results:
ctx = f"{r.get('title','')}. {r.get('snippet','')}"
p,o,l = extract_entities(ctx)
all_people += p; all_orgs += o; all_locs += l
# Scrape contacts concurrently, extracting org names from page content
professionals = []
with ThreadPoolExecutor(max_workers=MAX_SCRAPE_WORKERS) as ex:
futures = {ex.submit(scrape_contacts, r["link"], region): r for r in search_results}
for fut in as_completed(futures):
r = futures[fut]
contacts = {"emails": [], "phones": [], "org": None}
try:
contacts = fut.result()
except Exception as e:
print("[scrape future error]", r["link"], e)
# choose a single email/phone if available
email = contacts["emails"][0] if contacts.get("emails") else None
phone = contacts["phones"][0] if contacts.get("phones") else None
org_name = contacts.get("org") or ""
# attempt to choose profession tag from the query used
prof_tag = None
qlower = (r.get("query") or "").lower()
for p in professions_from_story(story):
if p in qlower:
prof_tag = p
break
prof_tag = prof_tag or (professions_from_story(story)[0] if professions_from_story(story) else "gbv")
professionals.append({
"org": org_name,
"url": r.get("link",""),
"email": email if email else "Not found",
"phone": phone if phone else "Not found",
"profession": prof_tag,
"source_query": r.get("query","")
})
summary = generate_summary("; ".join(queries[:3]) + (" ..." if len(queries)>3 else ""),
list(set(all_people)), list(set(all_orgs)), list(set(all_locs)))
# Sort by availability of email/phone
professionals.sort(key=lambda it: (0 if it["email"]!="Not found" else 1,
0 if it["phone"]!="Not found" else 1))
return {"summary": summary, "professionals": professionals, "queries_used": queries}
# ============================
# DRAFT (mailto + .eml)
# ============================
def build_mailto_and_eml(to_addr, subject, body, default_from="noreply@ally.ai"):
"""
Creates a proper .eml file and returns (mailto_link, absolute_eml_path).
Ensures the file is actually written and non-empty. If .eml fails, writes a .txt fallback.
"""
# sanitize inputs
to_addr = (to_addr or "").strip()
subject = subject or ""
body = body or ""
# Create EmailMessage object
msg = EmailMessage()
msg["From"] = default_from
msg["To"] = to_addr
msg["Subject"] = subject
msg.set_content(body)
# ensure output dir exists and use absolute path (more robust for HF Spaces / Colab)
out_dir = os.path.abspath("tmp")
os.makedirs(out_dir, exist_ok=True)
fname = os.path.join(out_dir, f"email_draft_{int(time.time())}.eml")
try:
# write bytes
with open(fname, "wb") as f:
f.write(msg.as_bytes())
# verify file exists and is non-empty
if os.path.exists(fname) and os.path.getsize(fname) > 0:
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, fname
# fallback: create a plain text copy (useful for debugging)
fallback = fname + ".txt"
with open(fallback, "w", encoding="utf-8") as f:
f.write(f"To: {to_addr}\nSubject: {subject}\n\n{body}")
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, fallback
except Exception as e:
# If writing .eml fails entirely, create a .txt fallback and return that path
fallback = os.path.join(out_dir, f"email_draft_{int(time.time())}.txt")
try:
with open(fallback, "w", encoding="utf-8") as f:
f.write(f"Error writing .eml: {e}\n\nTo: {to_addr}\nSubject: {subject}\n\n{body}")
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, fallback
except Exception as e2:
# ultimate fallback: return no file and an informative mailto
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, None
# ============================
# SENDER (SMTP) β Ally AI branding
# ============================
def send_ally_ai_email(to_email, subject, body, user_email,
sender_email, sender_password,
ai_name=ALLY_AI_NAME,
logo_url=ALLY_AI_LOGO_URL_DEFAULT):
if not to_email or to_email == "Not found":
return "β No recipient email found β choose a contact or provide a manual email."
msg = MIMEMultipart("alternative")
msg["Subject"] = subject or "Request for support"
msg["From"] = f"{ai_name} <{sender_email}>"
msg["To"] = to_email
html_content = f"""
<html>
<body style="font-family: Arial, sans-serif; color: #333;">
<div style="padding: 20px; border: 1px solid #eee; border-radius: 10px; max-width: 640px; margin: auto;">
<div style="text-align: center;">
<img src="{logo_url}" alt="{ai_name} Logo" width="120" style="margin-bottom: 20px;" />
</div>
<p>{body}</p>
<p style="margin-top:20px;">
<b>Contact the survivor back at:</b> <a href="mailto:{user_email}">{user_email}</a>
</p>
<hr style="border:none;border-top:1px solid #eee;margin:24px 0;">
<p style="font-size: 12px; color: gray; text-align: center;">
This message was prepared with the help of <b>{ai_name}</b> β connecting survivors with help safely.
</p>
</div>
</body>
</html>
"""
msg.attach(MIMEText(html_content, "html"))
try:
server = smtplib.SMTP("smtp.gmail.com", 587)
server.starttls()
server.login(sender_email, sender_password)
server.sendmail(sender_email, [to_email], msg.as_string())
server.quit()
return f"β
Email sent successfully to {to_email}"
except Exception as e:
return f"β Failed to send email: {str(e)}"
# ============================
# GRADIO UI
# ============================
def run_search(story, country):
try:
out = find_professionals_from_story(story, country=country, results_per_query=RESULTS_PER_QUERY)
except Exception as e:
err_msg = f"Search failed: {e}"
placeholder = ["0 β No results (search failed)"]
return err_msg, [], placeholder, ""
pros = out.get("professionals", []) or []
# build table records with org instead of article title
try:
records = pd.DataFrame(pros).to_dict(orient="records") if pros else []
except Exception:
records = []
# build dropdown options as list of strings
options = []
for i, r in enumerate(pros):
label_contact = r.get("email") if r.get("email") and r.get("email") != "Not found" else (r.get("phone", "No contact"))
org_label = r.get("org") or r.get("url") or "(no org)"
label = f"{i} β {org_label} ({label_contact})"
options.append(label)
if not options:
options = ["0 β No results (try a different country/query)"]
# anonymize safely
try:
anon = anonymize_story(story) or "I am seeking confidential support regarding gender-based violence."
except Exception as e:
print("[anonymize error]", e)
anon = "I am seeking confidential support regarding gender-based violence."
summary = out.get("summary", "No results found.")
return summary, records, options, anon
def make_body(anon_text, full_story, use_anon, user_email):
core = (anon_text or "").strip() if use_anon else (full_story or "").strip()
lines = [
core,
"",
f"Reply contact: {user_email}",
"",
"Thank you."
]
return "\n".join([l for l in lines if l is not None])
def preview_contact(dropdown_value, df_json, subject, message_text, manual_email):
if not dropdown_value:
return "No contact selected.", ""
try:
idx = int(str(dropdown_value).split(" β ")[0])
rows = pd.DataFrame(df_json)
contact = rows.iloc[idx].to_dict()
# choose recipient from manual_email if provided & valid, else scraped email
recipient = None
if manual_email and EMAIL_REGEX.search(manual_email):
recipient = manual_email.strip()
else:
recipient = contact.get("email") if contact.get("email") and contact.get("email")!="Not found" else "[no email]"
org_display = contact.get('org') or contact.get('url') or "(no org)"
html = f"""
<h3>Preview</h3>
<b>To:</b> {recipient}<br/>
<b>Organization:</b> <a href="{contact.get('url')}" target="_blank" rel="noopener">{org_display}</a><br/>
<b>Profession tag:</b> {contact.get('profession')}<br/>
<b>Subject:</b> {subject}<br/>
<hr/>
<pre style="white-space:pre-wrap;">{message_text}</pre>
"""
text = f"To: {recipient}\nOrganization: {org_display}\nSubject: {subject}\n\n{message_text[:600]}{'...' if len(message_text)>600 else ''}"
return text, html
except Exception as e:
return f"Preview error: {e}", ""
def confirm_action(mode, dropdown_value, df_json, subject, message_text,
user_email, sender_email, sender_password, logo_url, manual_email):
"""
mode: "Draft only" or "Send via SMTP (Gmail)"
manual_email: optional override to use when scraped email not found
"""
if not dropdown_value:
return "β No contact selected.", "", None
# locate contact
try:
idx = int(str(dropdown_value).split(" β ")[0])
rows = pd.DataFrame(df_json)
contact = rows.iloc[idx].to_dict()
except Exception as e:
return f"β Selection error: {e}", "", None
scraped_recipient = contact.get("email")
# use manual if valid
recipient = None
if manual_email and EMAIL_REGEX.search(manual_email):
recipient = manual_email.strip()
elif scraped_recipient and scraped_recipient != "Not found":
recipient = scraped_recipient
if mode.startswith("Send"):
# Validate required fields
if not recipient:
return "β No recipient email found β either pick a contact with an email or provide a manual email.", "", None
if not user_email or "@" not in user_email:
return "β Please enter your email (so the organisation can contact you).", "", None
if not sender_email or not sender_password:
return "β Sender email and app password are required for SMTP sending.", "", None
status = send_ally_ai_email(
to_email=recipient,
subject=subject,
body=message_text,
user_email=user_email,
sender_email=sender_email,
sender_password=sender_password,
ai_name=ALLY_AI_NAME,
logo_url=logo_url or ALLY_AI_LOGO_URL_DEFAULT
)
_, eml_path = build_mailto_and_eml(recipient, subject, message_text, default_from=sender_email)
file_out = eml_path if eml_path and os.path.exists(eml_path) else None
return status, "", file_out
else:
# Draft-only path (mailto + .eml)
recip_for_draft = recipient or ""
mailto, eml_path = build_mailto_and_eml(recip_for_draft, subject, message_text, default_from="noreply@ally.ai")
if eml_path and os.path.exists(eml_path) and os.path.getsize(eml_path) > 0:
html_link = f'<a href="{mailto}" target="_blank" rel="noopener">Open draft in email client</a>'
file_out = eml_path
return "β
Draft created (no email sent).", html_link, file_out
elif eml_path and os.path.exists(eml_path):
# file exists but is empty
return "β οΈ Draft file created but it's empty. Check the message body or try manual email.", "", eml_path
else:
return "β Failed to create draft file.", "", None
with gr.Blocks() as demo:
gr.Markdown("## Ally AI β GBV Help Finder & Email Assistant\n"
"This tool searches local professionals/organizations lets you select a contact or enter an email manually, and creates an email draft or sends a branded email via Gmail"
"**Privacy tip:** Prefer anonymized summaries unless youβre comfortable sharing details.")
with gr.Row():
story_in = gr.Textbox(label="Your story (free text)", lines=6, placeholder="Describe your situation and the help you want...")
country_in = gr.Textbox(value=DEFAULT_COUNTRY, label="Country (to bias search)")
search_btn = gr.Button("Search for professionals")
summary_out = gr.Textbox(label="Search summary (AI)", interactive=False)
# updated headers: use org (organization name) instead of article title
results_table = gr.Dataframe(headers=["org","url","email","phone","profession","source_query"], label="Search results")
dropdown_sel = gr.Dropdown(label="Select organization (from results)", choices=[])
with gr.Row():
use_anon = gr.Checkbox(value=True, label="Use anonymized summary (recommended)")
anon_out = gr.Textbox(label="Anonymized summary", lines=3)
user_email_in = gr.Textbox(label="Your email (for the organisation to reply to you)")
gr.Markdown("### Compose message")
subject_in = gr.Textbox(value="Request for GBV support", label="Email subject")
message_in = gr.Textbox(label="Message body", lines=10)
# Manual override for organization email (new)
manual_email_in = gr.Textbox(label="Manual org email (optional)")
with gr.Accordion("Sending options (for automatic sending via Ally AI SMTP)", open=False):
mode = gr.Radio(choices=["Draft only (mailto + .eml)", "Send via SMTP (Gmail)"], value="Draft only (mailto + .eml)", label="Delivery mode")
sender_email_in = gr.Textbox(label="Ally AI sender email (Gmail account)")
sender_pass_in = gr.Textbox(label="Ally AI sender app password", type="password")
logo_url_in = gr.Textbox(value=ALLY_AI_LOGO_URL_DEFAULT, label="Ally AI logo URL")
with gr.Row():
preview_btn = gr.Button("Preview")
confirm_btn = gr.Button("Confirm (Create Draft or Send)")
preview_text_out = gr.Textbox(label="Preview (text)", interactive=False)
preview_html_out = gr.HTML()
status_out = gr.Textbox(label="Status", interactive=False)
mailto_html_out = gr.HTML()
eml_file_out = gr.File(label="Download .eml")
# Wire: Search
def _on_search(story, country):
s, records, options, anon = run_search(story, country)
prefill = make_body(anon, story, True, "") # user email unknown yet
# return updated dropdown choices (value is first option)
return s, records, gr.update(choices=options, value=(options[0] if options else None)), anon, prefill
search_btn.click(_on_search,
inputs=[story_in, country_in],
outputs=[summary_out, results_table, dropdown_sel, anon_out, message_in])
# When user toggles anonymized vs full story, refresh the message body
def _refresh_body(use_anon_flag, anon_text, story, user_email):
return make_body(anon_text, story, use_anon_flag, user_email)
use_anon.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
user_email_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
anon_out.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
story_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
# Preview
preview_btn.click(preview_contact,
inputs=[dropdown_sel, results_table, subject_in, message_in, manual_email_in],
outputs=[preview_text_out, preview_html_out])
# Confirm (create draft or send) - manual_email_in passed as last arg
confirm_btn.click(confirm_action,
inputs=[mode, dropdown_sel, results_table, subject_in, message_in,
user_email_in, sender_email_in, sender_pass_in, logo_url_in, manual_email_in],
outputs=[status_out, mailto_html_out, eml_file_out])
demo.launch(share=False)
|