Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, send_file
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
+
import os
|
| 4 |
+
from huggingface_hub import InferenceClient
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
# Initialize the Flask app
|
| 9 |
+
app = Flask(__name__)
|
| 10 |
+
CORS(app) # Enable CORS for all routes
|
| 11 |
+
|
| 12 |
+
# Initialize the InferenceClient with your Hugging Face token
|
| 13 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment
|
| 14 |
+
client = InferenceClient(token=HF_TOKEN)
|
| 15 |
+
|
| 16 |
+
@app.route('/')
|
| 17 |
+
def home():
|
| 18 |
+
return "Welcome to the Image Background Remover!"
|
| 19 |
+
|
| 20 |
+
# Simple content moderation function
|
| 21 |
+
def is_prompt_explicit(prompt):
|
| 22 |
+
explicit_keywords = ["sexual", "nudity", "erotic", "explicit", "porn", "pornographic", "xxx", "hentai", "fetish", "sex", "sensual", "nude", "strip", "stripping", "adult", "lewd", "provocative", "obscene", "vulgar", "intimacy", "intimate", "lust", "arouse", "seductive", "seduction", "kinky", "bdsm", "dominatrix", "bondage", "hardcore", "softcore", "topless", "bottomless", "threesome", "orgy", "incest", "taboo", "masturbation", "genital", "penis", "vagina", "breast", "boob", "nipple", "butt", "anal", "oral", "ejaculation", "climax", "moan", "foreplay", "intercourse", "naked", "exposed", "suicide", "self-harm", "overdose", "poison", "hang", "end life", "kill myself", "noose", "depression", "hopeless", "worthless", "die", "death", "harm myself"] # Add more keywords as needed
|
| 23 |
+
for keyword in explicit_keywords:
|
| 24 |
+
if keyword.lower() in prompt.lower():
|
| 25 |
+
return True
|
| 26 |
+
return False
|
| 27 |
+
|
| 28 |
+
# Function to generate an image from a text prompt
|
| 29 |
+
def generate_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/sd-3.5", num_inference_steps=50, guidance_scale=7.5, seed=None):
|
| 30 |
+
try:
|
| 31 |
+
# Generate the image using Hugging Face's inference API with additional parameters
|
| 32 |
+
image = client.text_to_image(
|
| 33 |
+
prompt=prompt,
|
| 34 |
+
negative_prompt=negative_prompt,
|
| 35 |
+
height=height,
|
| 36 |
+
width=width,
|
| 37 |
+
model=model,
|
| 38 |
+
num_inference_steps=num_inference_steps, # Control the number of inference steps
|
| 39 |
+
guidance_scale=guidance_scale, # Control the guidance scale
|
| 40 |
+
seed=seed # Control the seed for reproducibility
|
| 41 |
+
)
|
| 42 |
+
return image # Return the generated image
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error generating image: {str(e)}")
|
| 45 |
+
return None
|
| 46 |
+
|
| 47 |
+
# Function to refine an image using the refiner model
|
| 48 |
+
def refine_image(image, prompt, negative_prompt=None, model="stabilityai/stable-diffusion-xl-refiner-1.0", num_inference_steps=50, guidance_scale=7.5):
|
| 49 |
+
try:
|
| 50 |
+
# Use Hugging Face's image-to-image API to refine the image
|
| 51 |
+
refined_image = client.image_to_image(
|
| 52 |
+
prompt=prompt,
|
| 53 |
+
negative_prompt=negative_prompt,
|
| 54 |
+
image=image,
|
| 55 |
+
model=model,
|
| 56 |
+
num_inference_steps=num_inference_steps,
|
| 57 |
+
guidance_scale=guidance_scale
|
| 58 |
+
)
|
| 59 |
+
return refined_image
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error refining image: {str(e)}")
|
| 62 |
+
return None
|
| 63 |
+
|
| 64 |
+
@app.route('/generate_image', methods=['POST'])
|
| 65 |
+
def generate_api():
|
| 66 |
+
data = request.get_json()
|
| 67 |
+
|
| 68 |
+
# Extract required fields from the request
|
| 69 |
+
prompt = data.get('prompt', '')
|
| 70 |
+
negative_prompt = data.get('negative_prompt', None)
|
| 71 |
+
height = data.get('height', 1024) # Default height
|
| 72 |
+
width = data.get('width', 720) # Default width
|
| 73 |
+
num_inference_steps = data.get('num_inference_steps', 50) # Default number of inference steps
|
| 74 |
+
guidance_scale = data.get('guidance_scale', 7.5) # Default guidance scale
|
| 75 |
+
model_name = data.get('model', 'stabilityai/sd-3.5') # Base model
|
| 76 |
+
refiner_model_name = 'stabilityai/sd-xl-refiner-1.0' # Refiner model
|
| 77 |
+
seed = data.get('seed', None) # Seed for reproducibility, default is None
|
| 78 |
+
|
| 79 |
+
if not prompt:
|
| 80 |
+
return jsonify({"error": "Prompt is required"}), 400
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
# Check for explicit content
|
| 84 |
+
if is_prompt_explicit(prompt):
|
| 85 |
+
# Return the pre-defined "thinkgood.png" image
|
| 86 |
+
return send_file(
|
| 87 |
+
"thinkgood.jpeg",
|
| 88 |
+
mimetype='image/png',
|
| 89 |
+
as_attachment=False,
|
| 90 |
+
download_name='thinkgood.png'
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Step 1: Generate the base image
|
| 94 |
+
base_image = generate_image(prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed)
|
| 95 |
+
|
| 96 |
+
if not base_image:
|
| 97 |
+
return jsonify({"error": "Failed to generate base image"}), 500
|
| 98 |
+
|
| 99 |
+
# Step 2: Refine the image with the refiner model
|
| 100 |
+
refined_image = refine_image(base_image, prompt, negative_prompt, refiner_model_name, num_inference_steps, guidance_scale)
|
| 101 |
+
|
| 102 |
+
if not refined_image:
|
| 103 |
+
return jsonify({"error": "Failed to refine image"}), 500
|
| 104 |
+
|
| 105 |
+
# Save the refined image to a BytesIO object
|
| 106 |
+
img_byte_arr = BytesIO()
|
| 107 |
+
refined_image.save(img_byte_arr, format='PNG') # Convert the image to PNG
|
| 108 |
+
img_byte_arr.seek(0) # Move to the start of the byte stream
|
| 109 |
+
|
| 110 |
+
# Send the refined image as a response
|
| 111 |
+
return send_file(
|
| 112 |
+
img_byte_arr,
|
| 113 |
+
mimetype='image/png',
|
| 114 |
+
as_attachment=False, # Send the file inline
|
| 115 |
+
download_name='refined_image.png' # File name for download
|
| 116 |
+
)
|
| 117 |
+
except Exception as e:
|
| 118 |
+
print(f"Error in generate_api: {str(e)}") # Log the error
|
| 119 |
+
return jsonify({"error": str(e)}), 500
|
| 120 |
+
|
| 121 |
+
# Add this block to make sure your app runs when called
|
| 122 |
+
if __name__ == "__main__":
|
| 123 |
+
app.run(host='0.0.0.0', port=7860) # Run directly if needed for testing
|