Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
# Define datasets
|
| 5 |
+
hospital_data = [
|
| 6 |
+
{'city': 'New York', 'state': 'NY', 'bed_count': 1500},
|
| 7 |
+
{'city': 'Los Angeles', 'state': 'CA', 'bed_count': 2000},
|
| 8 |
+
{'city': 'Chicago', 'state': 'IL', 'bed_count': 1200},
|
| 9 |
+
{'city': 'Houston', 'state': 'TX', 'bed_count': 1300},
|
| 10 |
+
{'city': 'Philadelphia', 'state': 'PA', 'bed_count': 1100}
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
population_data = [
|
| 14 |
+
{'state': 'NY', 'population': 20000000, 'square_miles': 54555},
|
| 15 |
+
{'state': 'CA', 'population': 40000000, 'square_miles': 163696},
|
| 16 |
+
{'state': 'IL', 'population': 13000000, 'square_miles': 57914},
|
| 17 |
+
{'state': 'TX', 'population': 29000000, 'square_miles': 268596},
|
| 18 |
+
{'state': 'PA', 'population': 13000000, 'square_miles': 46055}
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
# Convert datasets to pandas dataframes
|
| 22 |
+
hospital_df = pd.DataFrame(hospital_data)
|
| 23 |
+
population_df = pd.DataFrame(population_data)
|
| 24 |
+
|
| 25 |
+
# Merge datasets on 'state' column
|
| 26 |
+
merged_df = pd.merge(hospital_df, population_df, on='state')
|
| 27 |
+
|
| 28 |
+
# Filter merged dataset to only include hospitals with over 1000 beds
|
| 29 |
+
filtered_df = merged_df[merged_df['bed_count'] > 1000]
|
| 30 |
+
|
| 31 |
+
# Calculate hospital density as population per hospital bed
|
| 32 |
+
filtered_df['hospital_density'] = filtered_df['population'] / filtered_df['bed_count']
|
| 33 |
+
|
| 34 |
+
# Display merged and filtered dataset in Streamlit app
|
| 35 |
+
st.write(filtered_df)
|