Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files# CIFAR-10 Visual Analyzer 🔍📷
This app classifies uploaded images into one of the 10 CIFAR-10 classes using a fine-tuned ResNet-18 model, and optionally provides a Fourier Transform visualization of RGB channels.
## Model
- Base: ResNet-18
- Trained on: CIFAR-10 (with FFT exploration)
- Accuracy: ~78% (CPU-trained, 12 epochs)
## Features
- **Image Classification** into: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
- **FFT Mode**: Visualize frequency domain per RGB channel
## Usage
1. Upload any image
2. Choose between:
- **Raw**: Classify with the model
- **FFT**: Visualize RGB channel frequency maps
---
Built for educational and demonstrative purposes.
- cifar10_fouriervision_gradioapp.py +80 -0
- requirements.txt +6 -0
cifar10_fouriervision_gradioapp.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Cifar10-FourierVision-GradioApp.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1uw8cWaCxnSHf2CYhgeF_HYYdMeGP3odV
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import torch
|
| 12 |
+
import torchvision.transforms as transforms
|
| 13 |
+
import torchvision.models as models
|
| 14 |
+
import numpy as np
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
from PIL import Image
|
| 17 |
+
|
| 18 |
+
# CIFAR-10 class names
|
| 19 |
+
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
| 20 |
+
'dog', 'frog', 'horse', 'ship', 'truck']
|
| 21 |
+
|
| 22 |
+
# Load ResNet18 model and adapt final layer for CIFAR-10
|
| 23 |
+
resnet18 = models.resnet18(pretrained=False)
|
| 24 |
+
resnet18.fc = torch.nn.Linear(resnet18.fc.in_features, 10) # Replace final layer
|
| 25 |
+
resnet18.load_state_dict(torch.load("/content/sample_data/resnet18_fft_cifar10.pth", map_location=torch.device('cpu')))
|
| 26 |
+
resnet18.eval()
|
| 27 |
+
|
| 28 |
+
# Image transform
|
| 29 |
+
transform = transforms.Compose([
|
| 30 |
+
transforms.Resize((224, 224)), # ResNet18 expects 224x224
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 33 |
+
])
|
| 34 |
+
|
| 35 |
+
# FFT Visualizer
|
| 36 |
+
def apply_fft_visualization(image: Image.Image):
|
| 37 |
+
img_np = np.array(image.resize((32, 32))) / 255.0
|
| 38 |
+
fft_images = []
|
| 39 |
+
for i in range(3):
|
| 40 |
+
channel = img_np[:, :, i]
|
| 41 |
+
fft = np.fft.fft2(channel)
|
| 42 |
+
fft_shift = np.fft.fftshift(fft)
|
| 43 |
+
magnitude = np.log1p(np.abs(fft_shift))
|
| 44 |
+
fft_images.append(magnitude)
|
| 45 |
+
|
| 46 |
+
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
|
| 47 |
+
for i in range(3):
|
| 48 |
+
axs[i].imshow(fft_images[i], cmap='inferno')
|
| 49 |
+
axs[i].set_title(['Red', 'Green', 'Blue'][i])
|
| 50 |
+
axs[i].axis('off')
|
| 51 |
+
plt.tight_layout()
|
| 52 |
+
return fig
|
| 53 |
+
|
| 54 |
+
# Prediction Function
|
| 55 |
+
def predict(img: Image.Image, mode="Raw"):
|
| 56 |
+
if mode == "FFT":
|
| 57 |
+
return None, apply_fft_visualization(img)
|
| 58 |
+
|
| 59 |
+
img_tensor = transform(img).unsqueeze(0)
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
outputs = resnet18(img_tensor)
|
| 62 |
+
_, predicted = torch.max(outputs, 1)
|
| 63 |
+
label = classes[predicted.item()]
|
| 64 |
+
return label, None
|
| 65 |
+
|
| 66 |
+
# Gradio App
|
| 67 |
+
gr.Interface(
|
| 68 |
+
fn=predict,
|
| 69 |
+
inputs=[
|
| 70 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 71 |
+
gr.Radio(["Raw", "FFT"], label="Mode", value="Raw")
|
| 72 |
+
],
|
| 73 |
+
outputs=[
|
| 74 |
+
gr.Label(label="Prediction"),
|
| 75 |
+
gr.Plot(label="FFT Visualization")
|
| 76 |
+
],
|
| 77 |
+
title="CIFAR-10 Visual Analyzer (ResNet18)",
|
| 78 |
+
description="Upload an image and choose mode: Raw classification (ResNet18) or visualize FFT of RGB channels.\n\nDisclaimer: This model is trained on CIFAR-10 and works best on low-res, centered images."
|
| 79 |
+
).launch()
|
| 80 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
gradio
|
| 4 |
+
matplotlib
|
| 5 |
+
numpy
|
| 6 |
+
Pillow
|