GenAIDevTOProd's picture
Update app.py
dde1929 verified
import time
import random
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
# Visualization style
plt.style.use('seaborn-v0_8-darkgrid')
# Random seed for reproducibility
random.seed(42)
np.random.seed(42)
def simulate_batches(num_workers=4,
batch_time=500, # ms
network_latency=200, # ms
mode='synchronous',
num_batches=10):
"""
Simulates mini-batch scheduling under synchronous vs asynchronous update strategies.
Returns worker timelines and performance metrics.
"""
timelines = [] # [(worker_id, start, end, active_flag)]
current_time = [0] * num_workers # track each worker's time progress
for batch in range(num_batches):
for w in range(num_workers):
# Each worker takes a random batch processing time with jitter
proc_time = random.uniform(batch_time * 0.8, batch_time * 1.2)
start = current_time[w]
end = start + proc_time
timelines.append((w, start, end, 'active'))
current_time[w] = end
if mode == 'synchronous':
# Barrier: wait for all workers to finish
max_time = max(current_time)
for w in range(num_workers):
if current_time[w] < max_time:
timelines.append((w, current_time[w], max_time, 'idle'))
current_time[w] = max_time
# Add sync overhead (e.g., gradient aggregation)
current_time = [t + network_latency for t in current_time]
else:
# Asynchronous mode adds random network jitter
current_time = [t + random.uniform(0, network_latency * 0.3) for t in current_time]
total_time = max(current_time)
idle_time = sum(
end - start for (w, start, end, flag) in timelines if flag == 'idle'
)
total_blocks = sum(end - start for (_, start, end, _) in timelines)
idle_percent = (idle_time / total_blocks) * 100
throughput = (num_workers * num_batches * 1000) / total_time # batches per second (approx)
metrics = {
"epoch_time_ms": total_time,
"idle_percent": round(idle_percent, 2),
"throughput": round(throughput, 2)
}
return timelines, metrics
def plot_timeline(timelines, metrics, num_workers):
colors = {'active': '#4CAF50', 'idle': '#E74C3C'}
fig, ax = plt.subplots(figsize=(10, 5))
for (w, start, end, flag) in timelines:
ax.barh(y=w, width=end-start, left=start, color=colors[flag], edgecolor='black')
ax.set_xlabel("Time (ms)")
ax.set_ylabel("Worker ID")
ax.set_title("Batch Scheduler Simulation")
ax.set_yticks(range(num_workers))
ax.set_yticklabels([f"W{i}" for i in range(num_workers)])
ax.invert_yaxis()
text_summary = (
f"Epoch Duration: {metrics['epoch_time_ms']:.2f} ms\n"
f"Idle Time: {metrics['idle_percent']}%\n"
f"Throughput: {metrics['throughput']} batches/sec"
)
plt.figtext(0.72, 0.35, text_summary, fontsize=10,
bbox=dict(facecolor='white', alpha=0.7, edgecolor='gray'))
plt.tight_layout()
return fig
def run_simulation(num_workers, batch_time, network_latency, mode, num_batches):
timelines, metrics = simulate_batches(
num_workers=int(num_workers),
batch_time=float(batch_time),
network_latency=float(network_latency),
mode=mode,
num_batches=int(num_batches)
)
fig = plot_timeline(timelines, metrics, num_workers)
summary = (
f"Mode: {mode.capitalize()}\n"
f"Epoch Time: {metrics['epoch_time_ms']:.2f} ms\n"
f"Idle Time: {metrics['idle_percent']} %\n"
f"Throughput: {metrics['throughput']} batches/sec"
)
return fig, summary
interface = gr.Interface(
fn=run_simulation,
inputs=[
gr.Slider(1, 8, value=4, step=1, label="Number of Workers"),
gr.Slider(100, 1000, value=500, step=50, label="Batch Processing Time (ms)"),
gr.Slider(50, 500, value=200, step=25, label="Network Latency (ms)"),
gr.Radio(["synchronous", "asynchronous"], value="synchronous", label="Mode"),
gr.Slider(5, 30, value=10, step=1, label="Number of Batches per Epoch"),
],
outputs=[
gr.Plot(label="Timeline Visualization"),
gr.Textbox(label="Simulation Summary", lines=8, max_lines=12, show_copy_button=True)
],
title="🧠 Batch Scheduler Simulator",
description="Visualize how synchronous vs asynchronous batch scheduling affects throughput, idle time, and epoch duration.",
examples=[
[4, 500, 200, "synchronous", 10],
[8, 400, 150, "asynchronous", 15]
]
)
if __name__ == "__main__":
interface.launch()