import time import random import numpy as np import matplotlib.pyplot as plt import gradio as gr # Visualization style plt.style.use('seaborn-v0_8-darkgrid') # Random seed for reproducibility random.seed(42) np.random.seed(42) def simulate_batches(num_workers=4, batch_time=500, # ms network_latency=200, # ms mode='synchronous', num_batches=10): """ Simulates mini-batch scheduling under synchronous vs asynchronous update strategies. Returns worker timelines and performance metrics. """ timelines = [] # [(worker_id, start, end, active_flag)] current_time = [0] * num_workers # track each worker's time progress for batch in range(num_batches): for w in range(num_workers): # Each worker takes a random batch processing time with jitter proc_time = random.uniform(batch_time * 0.8, batch_time * 1.2) start = current_time[w] end = start + proc_time timelines.append((w, start, end, 'active')) current_time[w] = end if mode == 'synchronous': # Barrier: wait for all workers to finish max_time = max(current_time) for w in range(num_workers): if current_time[w] < max_time: timelines.append((w, current_time[w], max_time, 'idle')) current_time[w] = max_time # Add sync overhead (e.g., gradient aggregation) current_time = [t + network_latency for t in current_time] else: # Asynchronous mode adds random network jitter current_time = [t + random.uniform(0, network_latency * 0.3) for t in current_time] total_time = max(current_time) idle_time = sum( end - start for (w, start, end, flag) in timelines if flag == 'idle' ) total_blocks = sum(end - start for (_, start, end, _) in timelines) idle_percent = (idle_time / total_blocks) * 100 throughput = (num_workers * num_batches * 1000) / total_time # batches per second (approx) metrics = { "epoch_time_ms": total_time, "idle_percent": round(idle_percent, 2), "throughput": round(throughput, 2) } return timelines, metrics def plot_timeline(timelines, metrics, num_workers): colors = {'active': '#4CAF50', 'idle': '#E74C3C'} fig, ax = plt.subplots(figsize=(10, 5)) for (w, start, end, flag) in timelines: ax.barh(y=w, width=end-start, left=start, color=colors[flag], edgecolor='black') ax.set_xlabel("Time (ms)") ax.set_ylabel("Worker ID") ax.set_title("Batch Scheduler Simulation") ax.set_yticks(range(num_workers)) ax.set_yticklabels([f"W{i}" for i in range(num_workers)]) ax.invert_yaxis() text_summary = ( f"Epoch Duration: {metrics['epoch_time_ms']:.2f} ms\n" f"Idle Time: {metrics['idle_percent']}%\n" f"Throughput: {metrics['throughput']} batches/sec" ) plt.figtext(0.72, 0.35, text_summary, fontsize=10, bbox=dict(facecolor='white', alpha=0.7, edgecolor='gray')) plt.tight_layout() return fig def run_simulation(num_workers, batch_time, network_latency, mode, num_batches): timelines, metrics = simulate_batches( num_workers=int(num_workers), batch_time=float(batch_time), network_latency=float(network_latency), mode=mode, num_batches=int(num_batches) ) fig = plot_timeline(timelines, metrics, num_workers) summary = ( f"Mode: {mode.capitalize()}\n" f"Epoch Time: {metrics['epoch_time_ms']:.2f} ms\n" f"Idle Time: {metrics['idle_percent']} %\n" f"Throughput: {metrics['throughput']} batches/sec" ) return fig, summary interface = gr.Interface( fn=run_simulation, inputs=[ gr.Slider(1, 8, value=4, step=1, label="Number of Workers"), gr.Slider(100, 1000, value=500, step=50, label="Batch Processing Time (ms)"), gr.Slider(50, 500, value=200, step=25, label="Network Latency (ms)"), gr.Radio(["synchronous", "asynchronous"], value="synchronous", label="Mode"), gr.Slider(5, 30, value=10, step=1, label="Number of Batches per Epoch"), ], outputs=[ gr.Plot(label="Timeline Visualization"), gr.Textbox(label="Simulation Summary", lines=8, max_lines=12, show_copy_button=True) ], title="🧠 Batch Scheduler Simulator", description="Visualize how synchronous vs asynchronous batch scheduling affects throughput, idle time, and epoch duration.", examples=[ [4, 500, 200, "synchronous", 10], [8, 400, 150, "asynchronous", 15] ] ) if __name__ == "__main__": interface.launch()