Commit
·
eacb439
1
Parent(s):
5b15c15
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from scipy.special import softmax
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Add description and title
|
| 9 |
+
st.write("""
|
| 10 |
+
# Sentiment Analysis App
|
| 11 |
+
""")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Add image
|
| 15 |
+
image = st.image("images.png", width=200)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Get user input
|
| 19 |
+
text = st.text_input("Type here:")
|
| 20 |
+
button = st.button('Analyze')
|
| 21 |
+
|
| 22 |
+
# Define the CSS style for the app
|
| 23 |
+
st.markdown(
|
| 24 |
+
"""
|
| 25 |
+
<style>
|
| 26 |
+
body {
|
| 27 |
+
background-color: #f5f5f5;
|
| 28 |
+
}
|
| 29 |
+
h1 {
|
| 30 |
+
color: #4e79a7;
|
| 31 |
+
}
|
| 32 |
+
</style>
|
| 33 |
+
""",
|
| 34 |
+
unsafe_allow_html=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def preprocess(text):
|
| 39 |
+
new_text = []
|
| 40 |
+
for t in text.split(" "):
|
| 41 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
| 42 |
+
t = 'http' if t.startswith('http') else t
|
| 43 |
+
new_text.append(t)
|
| 44 |
+
return " ".join(new_text)
|
| 45 |
+
|
| 46 |
+
@st.cache_resource()
|
| 47 |
+
def get_model():
|
| 48 |
+
# Load the model and tokenizer
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 50 |
+
model = AutoModelForSequenceClassification.from_pretrained("MrDdz/bert-base-uncased")
|
| 51 |
+
return tokenizer,model
|
| 52 |
+
tokenizer, model = get_model()
|
| 53 |
+
|
| 54 |
+
if button:
|
| 55 |
+
text_sample = tokenizer(text, padding = 'max_length',return_tensors = 'pt')
|
| 56 |
+
# print(text_sample)
|
| 57 |
+
output = model(**text_sample)
|
| 58 |
+
scores_ = output[0][0].detach().numpy()
|
| 59 |
+
scores_ = softmax(scores_)
|
| 60 |
+
|
| 61 |
+
labels = ['Negative','Neutral','Positive']
|
| 62 |
+
scores = {l:float(s) for (l,s) in zip(labels,scores_)}
|
| 63 |
+
st.write("Prediction :",scores)
|