Spaces:
Runtime error
Runtime error
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image, ImageFilter
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
from skimage import morphology
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import io
|
| 8 |
+
|
| 9 |
+
# Images manipulation functions
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
#Image loading
|
| 13 |
+
def load_image(image_path):
|
| 14 |
+
'''Load image with PIL'''
|
| 15 |
+
image=Image.open(image_path)
|
| 16 |
+
return image
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
#Negative APPLYING
|
| 21 |
+
def apply_negative(image):
|
| 22 |
+
'''
|
| 23 |
+
input: PIL Image
|
| 24 |
+
|
| 25 |
+
output : PIL Image
|
| 26 |
+
|
| 27 |
+
Image loaded with PIL is turned to numpy format. Then, we calculate the new pixels values and image gotten is return to PIL format'''
|
| 28 |
+
|
| 29 |
+
img_np = np.array(image)
|
| 30 |
+
negative = 255 - img_np
|
| 31 |
+
return Image.fromarray(negative)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
#binarization
|
| 36 |
+
def binarize_image(image, threshold_value):
|
| 37 |
+
'''
|
| 38 |
+
inputs : PIL image ; threshold_value
|
| 39 |
+
|
| 40 |
+
output : PIL image
|
| 41 |
+
|
| 42 |
+
Image in PIL format is converted into grayscale format and then into numpy format.Now we make a binary threshold base on threshold value.
|
| 43 |
+
Image gotten is returned to Image format'''
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
img_np = np.array(image.convert('L'))
|
| 47 |
+
_, binary = cv2.threshold(img_np, threshold_value, 255, cv2.THRESH_BINARY)
|
| 48 |
+
return Image.fromarray(binary)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
#image resizing
|
| 55 |
+
def resize_image(image, width, height):
|
| 56 |
+
'''Resizing is doing by using PIL resizing method'''
|
| 57 |
+
|
| 58 |
+
return image.resize((width, height))
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
#image rotation
|
| 64 |
+
def rotate_image(image, angle):
|
| 65 |
+
'''Rotation is doing by using PIL rotation method'''
|
| 66 |
+
|
| 67 |
+
return image.rotate(angle)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
#Image histogram
|
| 72 |
+
def histogram(image):
|
| 73 |
+
|
| 74 |
+
img = np.array(image.convert('L'))
|
| 75 |
+
hist = cv2.calcHist([img],[0],None,[256],[0,256])
|
| 76 |
+
plt.plot(hist)
|
| 77 |
+
|
| 78 |
+
img_buf = io.BytesIO()
|
| 79 |
+
plt.savefig(img_buf, format='png')
|
| 80 |
+
|
| 81 |
+
return Image.open(img_buf)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
#Gaussian filter
|
| 88 |
+
def g_filter(image):
|
| 89 |
+
img_gauss = image.filter(ImageFilter.GaussianBlur(5) )
|
| 90 |
+
|
| 91 |
+
return img_gauss
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
#Sobel
|
| 95 |
+
def sobel_f(image):
|
| 96 |
+
i = np.array(image)
|
| 97 |
+
img = cv2.GaussianBlur(i, (3, 3), sigmaX=0, sigmaY=0)
|
| 98 |
+
|
| 99 |
+
edge_sobel = cv2.Sobel(src=img, ddepth=cv2.CV_8U, dx=1, dy=1, ksize=5)
|
| 100 |
+
return Image.fromarray(edge_sobel)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
#erosion
|
| 105 |
+
def erosion(image):
|
| 106 |
+
i=np.array(image.convert('L'))
|
| 107 |
+
ero_img= morphology.binary_erosion(i, morphology.disk(1))
|
| 108 |
+
return Image.fromarray(ero_img)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
#dilatation
|
| 112 |
+
def dilatation(image):
|
| 113 |
+
i=np.array(image.convert('L'))
|
| 114 |
+
ero_img= morphology.binary_dilation(i, morphology.disk(1))
|
| 115 |
+
return Image.fromarray(ero_img)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
#contour
|
| 120 |
+
def contour(image):
|
| 121 |
+
return image.filter(ImageFilter.CONTOUR)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
#lumineux
|
| 125 |
+
def lumineux(image):
|
| 126 |
+
return image.filter(ImageFilter.EDGE_ENHANCE)
|
| 127 |
+
|
| 128 |
+
#Netteté
|
| 129 |
+
def nette(image):
|
| 130 |
+
return image.filter(ImageFilter.SHARPEN)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# Interface Gradio
|
| 138 |
+
def image_processing(image, operation, threshold=128, width=100, height=100, angle=0):
|
| 139 |
+
if operation == "Négatif":
|
| 140 |
+
return apply_negative(image)
|
| 141 |
+
elif operation == "Binarisation":
|
| 142 |
+
return binarize_image(image, threshold)
|
| 143 |
+
elif operation == "Redimensionner":
|
| 144 |
+
return resize_image(image, width, height)
|
| 145 |
+
elif operation == "Rotation":
|
| 146 |
+
return rotate_image(image, angle)
|
| 147 |
+
elif operation == "Histogramme":
|
| 148 |
+
return histogram(image)
|
| 149 |
+
elif operation == "Gaussian Filter":
|
| 150 |
+
return g_filter(image)
|
| 151 |
+
elif operation == "Sobel":
|
| 152 |
+
return sobel_f(image)
|
| 153 |
+
elif operation == "Erosion":
|
| 154 |
+
return erosion(image)
|
| 155 |
+
elif operation == "Dilatation":
|
| 156 |
+
return erosion(image)
|
| 157 |
+
elif operation == "Contour":
|
| 158 |
+
return contour(image)
|
| 159 |
+
elif operation == "Luminosité":
|
| 160 |
+
return lumineux(image)
|
| 161 |
+
elif operation == "Netteté":
|
| 162 |
+
return nette(image)
|
| 163 |
+
return image
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
# Gradio Interface
|
| 174 |
+
with gr.Blocks() as demo:
|
| 175 |
+
gr.Markdown("## Mini photoshop")
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
image_input = gr.Image(type="pil", label="Charger Image")
|
| 179 |
+
operation = gr.Radio(["Négatif", "Binarisation", "Redimensionner", "Rotation","Histogramme","Gaussian Filter","Sobel", "Erosion","Dilatation","Luminosité","Contour", "Netteté"], label="Opération")
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=True)
|
| 183 |
+
width = gr.Number(value=100, label="Largeur de redimensionnement", visible=True)
|
| 184 |
+
height = gr.Number(value=100, label="Hauteur de redimensionnement", visible=True)
|
| 185 |
+
angle = gr.Number(value=0, label="Angle de Rotation", visible=True)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
image_output = gr.Image(label="Image Modifiée")
|
| 190 |
+
|
| 191 |
+
submit_button = gr.Button("Appliquer")
|
| 192 |
+
submit_button.click(image_processing, inputs=[image_input, operation, threshold, width, height, angle], outputs=image_output)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# Launch application
|
| 198 |
+
demo.launch()
|