Spaces:
Sleeping
Sleeping
File size: 10,828 Bytes
b83a684 d70d8cc b83a684 d70d8cc b83a684 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# app.py
import os, random
from typing import Tuple
import numpy as np
import pandas as pd
import torch
import gradio as gr
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from chronos import ChronosPipeline
# our data pipeline
import pipeline_v2 as pipe2 # update_ticker_csv(...)
# --------------------
# Config
# --------------------
MODEL_ID = "amazon/chronos-t5-large"
PREDICTION_LENGTH = 30 # forecast last 30 days
NUM_SAMPLES = 1 # single path -> day-by-day point prediction
RV_WINDOW = 20 # realized vol window (trading days)
ANNUALIZE = True # annualize by sqrt(252)
EPS = 1e-8
# --------------------
# Model load (once)
# --------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
pipe = ChronosPipeline.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=dtype,
)
# --------------------
# Helpers
# --------------------
def _extract_close(df: pd.DataFrame) -> pd.Series:
"""
Robustly extract the close or adjusted close price as a numeric Series.
Handles both flat and MultiIndex columns (yfinance often returns MultiIndex
when multiple tickers or suffixes are used).
"""
# --- Case 1: MultiIndex (e.g., ('Adj Close', 'BMW.DE')) ---
if isinstance(df.columns, pd.MultiIndex):
# Try Adj Close first
for name in ["Adj Close", "Adj_Close", "adj close", "adj_close"]:
if name in df.columns.get_level_values(0):
sub = df.xs(name, axis=1, level=0)
# If multiple tickers, pick first column
if sub.shape[1] > 1:
sub = sub.iloc[:, 0]
return pd.to_numeric(sub.squeeze(), errors="coerce").dropna()
# Fallback to Close
for name in ["Close", "close", "Price", "price"]:
if name in df.columns.get_level_values(0):
sub = df.xs(name, axis=1, level=0)
if sub.shape[1] > 1:
sub = sub.iloc[:, 0]
return pd.to_numeric(sub.squeeze(), errors="coerce").dropna()
# --- Case 2: Flat columns ---
mapping = {c.lower(): c for c in df.columns}
for name in ["adj close", "adj_close", "close", "price"]:
if name in mapping:
col = df[mapping[name]]
return pd.to_numeric(col, errors="coerce").dropna()
# --- Fallback: last numeric column ---
num_cols = df.select_dtypes(include=[np.number]).columns
if len(num_cols) == 0:
raise gr.Error("No numeric price column found in downloaded data.")
return pd.Series(df[num_cols[-1]]).astype(float)
def _extract_dates(df: pd.DataFrame):
# If index is DatetimeIndex, use it
if isinstance(df.index, pd.DatetimeIndex):
return df.index.to_numpy()
# Else try a date-like column
mapping = {c.lower(): c for c in df.columns}
for name in ["date", "time", "timestamp"]:
if name in mapping:
try:
return pd.to_datetime(df[mapping[name]]).to_numpy()
except Exception:
pass
# Fallback to a simple range
return np.arange(len(df))
def compute_realized_vol(close: pd.Series, window: int = 20, annualize: bool = True) -> pd.Series:
r = np.log(close).diff().dropna()
rv = r.rolling(window, min_periods=window).std()
if annualize:
rv = rv * np.sqrt(252.0)
return rv.dropna().reset_index(drop=True)
def bias_scale_calibration(y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[float, np.ndarray]:
alpha = float(np.sum(y_true * y_pred) / (np.sum(y_pred**2) + EPS))
return alpha, alpha * y_pred
def compute_metrics(y_true: np.ndarray, y_pred: np.ndarray) -> dict:
err = y_pred - y_true
denom = np.maximum(EPS, np.abs(y_true))
mape = float((np.abs(err) / denom).mean() * 100)
mpe = float((err / np.maximum(EPS, y_true)).mean() * 100)
rmse = float(np.sqrt(np.mean(err**2)))
return {"MAPE": mape, "MPE": mpe, "RMSE": rmse}
# --------------------
# Core routine
# --------------------
def run_for_ticker(tickers: str, start: str, interval: str, use_calibration: bool):
"""
tickers: comma/space separated; we use the FIRST for plotting/eval.
start: YYYY-MM-DD
interval: '1d', '1wk', '1mo'
"""
# Parse first ticker (keep dots and dashes!)
tick_list = [t.strip() for t in tickers.replace(";", ",").replace("|", ",").split(",") if t.strip()]
if not tick_list:
raise gr.Error("Please enter at least one ticker, e.g. AAPL or NESN.SW")
ticker = tick_list[0] # keep original form; pipeline handles uppercasing
# 1) Fetch/update CSV via pipeline
try:
csv_path = pipe2.update_ticker_csv(ticker, start=start, interval=interval)
except Exception as e:
raise gr.Error(
f"Data fetch failed for '{ticker}'. Tip: ensure exchange suffixes (e.g., NESN.SW, BMW.DE, VOD.L).\n{e}"
)
# 2) Load CSV and build realized vol
try:
df = pd.read_csv(csv_path, index_col=0, parse_dates=True)
if not isinstance(df.index, pd.DatetimeIndex):
# last fallback
df = pd.read_csv(csv_path)
except Exception:
df = pd.read_csv(csv_path)
dates = _extract_dates(df)
close = _extract_close(df)
rv = compute_realized_vol(close, window=RV_WINDOW, annualize=ANNUALIZE).to_numpy()
n = len(rv); H = PREDICTION_LENGTH
if n <= H + 5:
raise gr.Error(f"Vol series too short after rolling window. Need > {H+5}, got {n}.")
rv_train = rv[: n - H]
rv_test = rv[n - H :]
# 3) Forecast a single sample path (deterministic via seed)
random.seed(0); np.random.seed(0); torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
context = torch.tensor(rv_train, dtype=torch.float32)
fcst = pipe.predict(context, prediction_length=H, num_samples=NUM_SAMPLES) # [1, 1, H]
samples = fcst[0].cpu().numpy() # (1, H)
path_pred = samples[0] # (H,)
# 4) Optional bias/scale calibration
alpha = None
if use_calibration:
alpha, path_pred_cal = bias_scale_calibration(rv_test, path_pred)
metrics_raw = compute_metrics(rv_test, path_pred)
metrics_cal = compute_metrics(rv_test, path_pred_cal)
else:
metrics_raw = compute_metrics(rv_test, path_pred)
metrics_cal = None
path_pred_cal = None
# 5) Plot
fig = plt.figure(figsize=(10, 4))
H0 = len(rv_train)
if isinstance(dates, np.ndarray) and len(dates) >= len(close):
dates_rv = np.array(dates[-len(rv):])
x_hist = dates_rv[:H0]
x_fcst = dates_rv[H0:]
x_lbl = "date"
else:
x_hist = np.arange(H0)
x_fcst = np.arange(H0, H0 + H)
x_lbl = "time index"
plt.plot(x_hist, rv_train, label="realized vol (history)")
plt.plot(x_fcst, rv_test, label="realized vol (actual last 30)")
plt.plot(x_fcst, path_pred, linestyle="--", label="forecast (raw path)")
if use_calibration:
plt.plot(x_fcst, path_pred_cal, linestyle="--", label=f"forecast (calibrated, α={alpha:.3f})")
plt.title(f"{ticker.upper()} — Volatility Forecast (RV={RV_WINDOW}, H={H}, interval={interval})")
plt.xlabel(x_lbl); plt.ylabel("realized volatility")
plt.legend(loc="best"); plt.tight_layout()
# 6) Per-day table
last_dates = x_fcst
df_days = pd.DataFrame({
"date": last_dates,
"actual_vol": rv_test,
"forecast_raw": path_pred,
})
if use_calibration:
df_days["forecast_calibrated"] = path_pred_cal
df_days["abs_pct_error_raw_%"] = np.abs((path_pred - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
df_days["abs_pct_error_cal_%"] = np.abs((path_pred_cal - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
else:
df_days["abs_pct_error_raw_%"] = np.abs((path_pred - rv_test) / np.maximum(EPS, np.abs(rv_test))) * 100
# 7) JSON + metrics text
out = {
"ticker": ticker.upper(),
"csv_path": csv_path,
"config": {
"start": start,
"interval": interval,
"rv_window": RV_WINDOW,
"prediction_length": H,
"num_samples": NUM_SAMPLES,
"annualized": ANNUALIZE,
"point_forecast": "single_sample_path",
},
"metrics_raw": {k: round(v, 4) for k, v in metrics_raw.items()},
}
metrics_md = f"**RAW** — MAPE {metrics_raw['MAPE']:.2f}% | MPE {metrics_raw['MPE']:.2f}% | RMSE {metrics_raw['RMSE']:.5f}"
if use_calibration and metrics_cal is not None:
out["alpha"] = alpha
out["metrics_calibrated"] = {k: round(v, 4) for k, v in metrics_cal.items()}
metrics_md += f"\n**CALIBRATED** — MAPE {metrics_cal['MAPE']:.2f}% | MPE {metrics_cal['MPE']:.2f}% | RMSE {metrics_cal['RMSE']:.5f}"
return fig, out, df_days, metrics_md
# --------------------
# UI
# --------------------
with gr.Blocks(title="Volatility Forecast • yfinance pipeline + Chronos") as demo:
gr.Markdown(
"### Predict last 30 days of realized volatility for any ticker\n"
"- Works with symbols like `AAPL`, `NESN.SW`, `BMW.DE`, `VOD.L`, `BRK-B`, `BTC-USD`.\n"
"- Data fetched via **yfinance** using your `pipeline_v2.update_ticker_csv`.\n"
"- Forecast uses **Chronos-T5-Large** (single path, deterministic seed).\n"
"- Day-by-day comparison with **MAPE/MPE/RMSE**.\n"
"- Optional **Bias/Scale Calibration (α)**."
)
with gr.Row():
tickers_in = gr.Textbox(value="AAPL", label="Ticker (you can use suffixes like NESN.SW, BMW.DE)")
with gr.Row():
start_in = gr.Textbox(value="2015-01-01", label="Start date (YYYY-MM-DD)")
interval_in = gr.Dropdown(choices=["1d", "1wk", "1mo"], value="1d", label="Interval")
calib_in = gr.Checkbox(value=True, label="Apply bias/scale calibration (α)")
run_btn = gr.Button("Run", variant="primary")
plot = gr.Plot(label="Forecast vs Actual (last 30 days)")
meta = gr.JSON(label="Run config & metrics")
table = gr.Dataframe(label="Per-day comparison", wrap=True)
metrics = gr.Markdown(label="Summary")
run_btn.click(run_for_ticker, inputs=[tickers_in, start_in, interval_in, calib_in],
outputs=[plot, meta, table, metrics])
if __name__ == "__main__":
demo.launch()
|