File size: 15,353 Bytes
27cb3e3
 
 
 
 
 
 
 
 
 
 
 
 
9b1dcad
27cb3e3
9b1dcad
27cb3e3
9b1dcad
 
 
 
 
 
 
 
 
 
 
 
 
27cb3e3
 
9b1dcad
27cb3e3
9b1dcad
27cb3e3
 
 
 
9b1dcad
27cb3e3
9b1dcad
27cb3e3
 
 
 
 
 
 
 
 
 
 
b9cbc71
 
27cb3e3
 
 
b9cbc71
 
27cb3e3
 
 
 
b9cbc71
 
27cb3e3
 
 
 
 
9b1dcad
0d447bd
9b1dcad
0d447bd
 
 
 
 
 
9b1dcad
0d447bd
9b1dcad
0d447bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b1dcad
0d447bd
 
9b1dcad
0d447bd
9b1dcad
0d447bd
 
b9cbc71
0d447bd
 
 
 
 
 
 
 
 
 
 
 
 
aa41700
 
0d447bd
aa41700
9b1dcad
 
376d711
9b1dcad
27cb3e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b1dcad
27cb3e3
 
9b1dcad
376d711
9b1dcad
27cb3e3
 
 
0d447bd
 
 
27cb3e3
 
 
 
 
9b1dcad
376d711
9b1dcad
27cb3e3
 
 
 
e841327
 
 
27cb3e3
 
9b1dcad
27cb3e3
9b1dcad
0d447bd
27cb3e3
 
0d447bd
27cb3e3
 
0d447bd
 
 
 
27cb3e3
 
 
 
 
9b1dcad
 
27cb3e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d447bd
 
27cb3e3
 
 
376d711
0d447bd
 
9b1dcad
aa41700
9b1dcad
0d447bd
 
 
376d711
0d447bd
4c73f8b
376d711
0d447bd
 
 
4c73f8b
aa41700
0d447bd
 
 
 
 
 
 
4c73f8b
0d447bd
 
 
376d711
0d447bd
aa41700
0d447bd
 
 
 
 
4c73f8b
0d447bd
 
 
376d711
0d447bd
 
 
 
9b1dcad
 
0d447bd
 
 
 
aa41700
 
 
0d447bd
 
aa41700
0d447bd
 
 
376d711
 
0d447bd
9b1dcad
3bdd51c
9b1dcad
3bdd51c
 
 
 
 
 
 
27cb3e3
9b1dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d447bd
9b1dcad
 
376d711
9b1dcad
 
 
27cb3e3
9b1dcad
0d447bd
9b1dcad
0d447bd
9b1dcad
3bdd51c
9b1dcad
3bdd51c
0d447bd
 
9b1dcad
0d447bd
9b1dcad
0d447bd
376d711
27cb3e3
 
 
376d711
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import gradio as gr
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
from efficientnet_pytorch import EfficientNet
import timm
import torch
import torch.nn.functional as F
from PIL import Image
import numpy as np
import torchvision.transforms as T
import urllib.request
import json
import cv2

# ---------------------------
# Model Configs
# ---------------------------
MODEL_CONFIGS = {
    "DeiT-Tiny": {"type": "hf", "id": "facebook/deit-tiny-patch16-224"},
    "DeiT-Small": {"type": "hf", "id": "facebook/deit-small-patch16-224"},
    "ViT-Base": {"type": "hf", "id": "google/vit-base-patch16-224"},
    "ConvNeXt-Tiny": {"type": "timm", "id": "convnext_tiny"},
    "ConvNeXt-Nano": {"type": "timm", "id": "convnext_nano"},
    "EfficientNet-B0": {"type": "efficientnet", "id": "efficientnet-b0"},
    "EfficientNet-B1": {"type": "efficientnet", "id": "efficientnet-b1"},
    "ResNet-50": {"type": "timm", "id": "resnet50"},
    "MobileNet-V2": {"type": "timm", "id": "mobilenetv2_100"},
    "MaxViT-Tiny": {"type": "timm", "id": "maxvit_tiny_tf_224"},
    "MobileViT-Small": {"type": "timm", "id": "mobilevit_s"},
    "EdgeNeXt-Small": {"type": "timm", "id": "edgenext_small"},
    "RegNetY-002": {"type": "timm", "id": "regnety_002"}
}

# ---------------------------
# ImageNet Labels
# ---------------------------
IMAGENET_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
with urllib.request.urlopen(IMAGENET_URL) as url:
    IMAGENET_LABELS = json.load(url)

# ---------------------------
# Lazy Load
# ---------------------------
loaded_models = {}

def load_model(model_name):
    if model_name in loaded_models:
        return loaded_models[model_name]

    config = MODEL_CONFIGS[model_name]
    if config["type"] == "hf":
        extractor = AutoFeatureExtractor.from_pretrained(config["id"])
        model = AutoModelForImageClassification.from_pretrained(config["id"], output_attentions=True)
        model.eval()
        for param in model.parameters():
            param.requires_grad = True
    elif config["type"] == "timm":
        model = timm.create_model(config["id"], pretrained=True)
        model.eval()
        for param in model.parameters():
            param.requires_grad = True
        extractor = None
    elif config["type"] == "efficientnet":
        model = EfficientNet.from_pretrained(config["id"])
        model.eval()
        for param in model.parameters():
            param.requires_grad = True
        extractor = None

    loaded_models[model_name] = (model, extractor)
    return model, extractor

# ---------------------------
# Adversarial Noise
# ---------------------------
def add_adversarial_noise(image, epsilon):
    img_array = np.array(image).astype(np.float32) / 255.0
    noise = np.random.randn(*img_array.shape) * epsilon
    noisy_img = np.clip(img_array + noise, 0, 1)
    return Image.fromarray((noisy_img * 255).astype(np.uint8))

# ---------------------------
# Grad-CAM for Class-Specific Attention
# ---------------------------
def get_gradcam_for_class(model, image_tensor, class_idx):
    grad = None
    fmap = None

    def forward_hook(module, input, output):
        nonlocal fmap
        fmap = output.detach()

    def backward_hook(module, grad_in, grad_out):
        nonlocal grad
        grad = grad_out[0].detach()

    last_conv = None
    for name, module in reversed(list(model.named_modules())):
        if isinstance(module, torch.nn.Conv2d):
            last_conv = module
            break
    if last_conv is None:
        return np.ones((224, 224))

    handle_fwd = last_conv.register_forward_hook(forward_hook)
    handle_bwd = last_conv.register_full_backward_hook(backward_hook)

    out = model(image_tensor)
    score = out[0, class_idx]
    model.zero_grad()
    score.backward()

    handle_fwd.remove()
    handle_bwd.remove()

    if grad is None or fmap is None:
        return np.ones((224, 224))

    weights = grad.mean(dim=(2, 3), keepdim=True)
    cam = (weights * fmap).sum(dim=1, keepdim=True)
    cam = F.relu(cam)
    cam = cam.squeeze().cpu().numpy()
    cam = cv2.resize(cam, (224, 224))
    cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)

    return cam

# ---------------------------
# ViT Attention for Class-Specific
# ---------------------------
def vit_attention_for_class(model, extractor, image, class_idx):
    inputs = extractor(images=image, return_tensors="pt")
    inputs['pixel_values'].requires_grad = True
    outputs = model(**inputs)
    
    score = outputs.logits[0, class_idx]
    model.zero_grad()
    score.backward()
    
    if hasattr(outputs, 'attentions') and outputs.attentions is not None:
        attn = outputs.attentions[-1]
        attn = attn.mean(1)
        attn = attn[:, 0, 1:]
        attn_map = attn.reshape(1, 14, 14)
        attn_map = attn_map.squeeze().detach().cpu().numpy()
        attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-8)
        prob = F.softmax(outputs.logits, dim=-1)[0, class_idx].item()
        return attn_map, prob
    
    return np.ones((14, 14)), 0.0

# ---------------------------
# Grad-CAM Helper for CNNs
# ---------------------------
def get_gradcam(model, image_tensor):
    grad = None
    fmap = None

    def forward_hook(module, input, output):
        nonlocal fmap
        fmap = output.detach()

    def backward_hook(module, grad_in, grad_out):
        nonlocal grad
        grad = grad_out[0].detach()

    last_conv = None
    for name, module in reversed(list(model.named_modules())):
        if isinstance(module, torch.nn.Conv2d):
            last_conv = module
            break
    if last_conv is None:
        return np.ones((224, 224))

    handle_fwd = last_conv.register_forward_hook(forward_hook)
    handle_bwd = last_conv.register_full_backward_hook(backward_hook)

    out = model(image_tensor)
    class_idx = out.argmax(dim=1).item()
    score = out[0, class_idx]
    model.zero_grad()
    score.backward()

    handle_fwd.remove()
    handle_bwd.remove()

    if grad is None or fmap is None:
        return np.ones((224, 224))

    weights = grad.mean(dim=(2, 3), keepdim=True)
    cam = (weights * fmap).sum(dim=1, keepdim=True)
    cam = F.relu(cam)
    cam = cam.squeeze().cpu().numpy()
    cam = cv2.resize(cam, (224, 224))
    cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)

    return cam

# ---------------------------
# ViT Attention Rollout
# ---------------------------
def vit_attention_rollout(outputs):
    if not hasattr(outputs, 'attentions') or outputs.attentions is None:
        return np.ones((14, 14))
    attn = outputs.attentions[-1]
    attn = attn.mean(1)
    attn = attn[:, 0, 1:]
    attn_map = attn.reshape(1, 14, 14)
    attn_map = attn_map.squeeze().detach().cpu().numpy()
    attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-8)
    return attn_map

# ---------------------------
# Overlay Attention on Image
# ---------------------------
def overlay_attention(pil_img, attention_map):
    heatmap = (attention_map * 255).astype(np.uint8)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
    heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    heatmap = cv2.resize(heatmap, pil_img.size)
    heatmap_pil = Image.fromarray(heatmap)
    blended = Image.blend(pil_img.convert("RGB"), heatmap_pil, alpha=0.4)
    return blended

# ---------------------------
# Main Prediction Function
# ---------------------------
def predict(image, model_name, noise_level):
    try:
        if image is None:
            return {"Error": "Please upload an image"}, None, None
        
        if model_name is None:
            return {"Error": "Please select a model"}, None, None

        if noise_level > 0:
            image = add_adversarial_noise(image, noise_level)

        model, extractor = load_model(model_name)
        transform = T.Compose([
            T.Resize((224, 224)),
            T.ToTensor(),
            T.Normalize(mean=[0.485, 0.456, 0.406],
                        std=[0.229, 0.224, 0.225])
        ])

        if MODEL_CONFIGS[model_name]["type"] == "hf":
            with torch.no_grad():
                inputs = extractor(images=image, return_tensors="pt")
                outputs = model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)[0]
                top5_prob, top5_idx = torch.topk(probs, k=5)
                top5_labels = [model.config.id2label[idx.item()] for idx in top5_idx]
                att_map = vit_attention_rollout(outputs)
        else:
            x = transform(image).unsqueeze(0)
            x.requires_grad = True
            
            with torch.no_grad():
                outputs = model(x.detach())
                probs = F.softmax(outputs, dim=-1)[0]
                top5_prob, top5_idx = torch.topk(probs, k=5)
                top5_labels = [IMAGENET_LABELS[idx.item()] for idx in top5_idx]
            
            att_map = get_gradcam(model, x)

        overlay = overlay_attention(image, att_map)
        result = {label: float(prob) for label, prob in zip(top5_labels, top5_prob)}
        
        return result, overlay, image

    except Exception as e:
        import traceback
        print(f"Error: {traceback.format_exc()}")
        return {"Error": str(e)}, None, None

# ---------------------------
# Class-Specific Attention with Confidence
# ---------------------------
def get_class_specific_attention(image, model_name, class_query):
    try:
        if image is None:
            return None, "Please upload an image first"
        
        if not class_query or class_query.strip() == "":
            return None, "Please enter a class name"

        class_query_lower = class_query.lower().strip()
        matching_idx = None
        matched_label = None
        confidence = 0.0
        
        model, extractor = load_model(model_name)
        
        if MODEL_CONFIGS[model_name]["type"] == "hf":
            for idx, label in model.config.id2label.items():
                if class_query_lower in label.lower():
                    matching_idx = idx
                    matched_label = label
                    break
            
            if matching_idx is None:
                return None, f"Class '{class_query}' not found in model labels."
            
            att_map, confidence = vit_attention_for_class(model, extractor, image, matching_idx)
            
        else:
            for idx, label in enumerate(IMAGENET_LABELS):
                if class_query_lower in label.lower():
                    matching_idx = idx
                    matched_label = label
                    break
            
            if matching_idx is None:
                return None, f"Class '{class_query}' not found in ImageNet labels."
            
            transform = T.Compose([
                T.Resize((224, 224)),
                T.ToTensor(),
                T.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225])
            ])
            x = transform(image).unsqueeze(0)
            x.requires_grad = True
            att_map = get_gradcam_for_class(model, x, matching_idx)
            with torch.no_grad():
                outputs = model(x)
                confidence = F.softmax(outputs, dim=-1)[0, matching_idx].item()
        
        overlay = overlay_attention(image, att_map)
        return overlay, f"βœ“ Attention map generated for class: '{matched_label}' (Index: {matching_idx}, Confidence: {confidence:.2f})"
        
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        return None, f"Error generating attention map: {str(e)}"

# ---------------------------
# Sample Classes
# ---------------------------
SAMPLE_CLASSES = [
    "cat", "dog", "tiger", "lion", "elephant",
    "car", "truck", "airplane", "ship", "train",
    "pizza", "hamburger", "coffee", "banana", "apple",
    "chair", "table", "laptop", "keyboard", "mouse",
    "person", "bicycle", "building", "tree", "flower"
]

# ---------------------------
# Gradio UI
# ---------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🧠 Enhanced Multi-Model Image Classifier")
    gr.Markdown("### Features: Adversarial Examples | Class-Specific Attention | 13+ Models")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil", label="πŸ“Έ Upload Image")
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_CONFIGS.keys()), 
                label="πŸ€– Select Model",
                value="DeiT-Tiny"
            )
            
            gr.Markdown("### 🎭 Adversarial Noise")
            noise_slider = gr.Slider(
                minimum=0, 
                maximum=0.3, 
                value=0, 
                step=0.01,
                label="Noise Level (Ξ΅)",
                info="Add random noise to test model robustness"
            )
            
            run_button = gr.Button("πŸš€ Run Model", variant="primary")
            
        with gr.Column(scale=2):
            output_label = gr.Label(num_top_classes=5, label="🎯 Top 5 Predictions")
            output_image = gr.Image(label="πŸ” Attention Map (Top Prediction)")
            processed_image = gr.Image(label="πŸ–ΌοΈ Processed Image (with noise if applied)", visible=False)
    
    gr.Markdown("---")
    gr.Markdown("### 🎨 Class-Specific Attention Visualization")
    gr.Markdown("*Type any class name to see where the model looks for that specific object*")
    
    with gr.Row():
        with gr.Column(scale=1):
            class_input = gr.Textbox(
                label="πŸ” Enter Class Name",
                placeholder="e.g., cat, dog, car, pizza...",
                info="Type any ImageNet class name"
            )
            class_button = gr.Button("🎯 Generate Class-Specific Attention", variant="primary")
            gr.Markdown("**πŸ’‘ Sample classes to try:**")
            sample_buttons = gr.Radio(
                choices=SAMPLE_CLASSES,
                label="Click to auto-fill",
                interactive=True
            )
            
        with gr.Column(scale=2):
            class_output_image = gr.Image(label="πŸ” Class-Specific Attention Map")
            class_status = gr.Textbox(label="Status", interactive=False)
    
    gr.Markdown("---")
    gr.Markdown("""
    ### πŸ’‘ Tips:
    - **Adversarial Noise**: Adjust the slider to add random noise and see how robust the model is
    - **Class-Specific Attention**: Type any ImageNet class to visualize what the model looks for
    - **Model Variety**: Try different architectures (ViT, CNN, Hybrid) to compare their behavior
    """)
    
    run_button.click(
        predict,
        inputs=[input_image, model_dropdown, noise_slider],
        outputs=[output_label, output_image, processed_image]
    )
    
    sample_buttons.change(
        lambda x: x,
        inputs=[sample_buttons],
        outputs=[class_input]
    )
    
    class_button.click(
        get_class_specific_attention,
        inputs=[input_image, model_dropdown, class_input],
        outputs=[class_output_image, class_status]
    )

if __name__ == "__main__":
    demo.launch()