File size: 27,183 Bytes
0f691e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import torch.nn.functional as F
from torch.nn import Parameter as P
from util import util
from torchvision import models
import scipy.io as sio
import numpy as np
import scipy.ndimage
import torch.nn.utils.spectral_norm as SpectralNorm

from torch.autograd import Function
from math import sqrt
import random
import os
import math

from sync_batchnorm import convert_model
####

###############################################################################
# Helper Functions
###############################################################################
def get_norm_layer(norm_type='instance'):
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=True)
    elif norm_type == 'none':
        norm_layer = None
    else:
        raise NotImplementedError('normalization layer [%s] is not found' % norm_type)

    return norm_layer


def get_scheduler(optimizer, opt):
    if opt.lr_policy == 'lambda':
        def lambda_rule(epoch):
            lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
            return lr_l
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    elif opt.lr_policy == 'step':
        scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
    elif opt.lr_policy == 'plateau':
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
    else:
        return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)

    return scheduler


def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func)


def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[], init_flag=True):
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())
        net = convert_model(net)
        net.to(gpu_ids[0])
        net = torch.nn.DataParallel(net, gpu_ids)

    if init_flag:

        init_weights(net, init_type, gain=init_gain)

    return net


# compute adaptive instance norm
def calc_mean_std(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 3)
    C, _ = size[:2]
    feat_var = feat.contiguous().view(C, -1).var(dim=1) + eps
    feat_std = feat_var.sqrt().view(C, 1, 1)
    feat_mean = feat.contiguous().view(C, -1).mean(dim=1).view(C, 1, 1)

    return feat_mean, feat_std


def adaptive_instance_normalization(content_feat, style_feat):  # content_feat is degraded feature, style is ref feature
    assert (content_feat.size()[:1] == style_feat.size()[:1])
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)

    normalized_feat = (content_feat - content_mean.expand(
        size)) / content_std.expand(size)

    return normalized_feat * style_std.expand(size) + style_mean.expand(size)

def calc_mean_std_4D(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 4)
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std

def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature
    # assert (content_feat.size()[:2] == style_feat.size()[:2])
    size = content_feat.size()
    style_mean, style_std = calc_mean_std_4D(style_feat)

    content_mean, content_std = calc_mean_std_4D(content_feat)
    normalized_feat = (content_feat - content_mean.expand(
        size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)

def define_G(which_model_netG, gpu_ids=[]):
    if which_model_netG == 'UNetDictFace':
        netG = UNetDictFace(64)
        init_flag = False
    else:
        raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG)
    return init_net(netG, 'normal', 0.02, gpu_ids, init_flag)


##############################################################################
# Classes
############################################################################################################################################


def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True):
    return nn.Sequential(
        SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
#         conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias),
#         nn.BatchNorm2d(out_channels),
        nn.LeakyReLU(0.2),
        SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
    )
class MSDilateBlock(nn.Module):
    def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True):
        super(MSDilateBlock, self).__init__()
        self.conv1 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias)
        self.conv2 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias)
        self.conv3 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias)
        self.conv4 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias)
        self.convi =  SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias))
    def forward(self, x):
        conv1 = self.conv1(x)
        conv2 = self.conv2(x)
        conv3 = self.conv3(x)
        conv4 = self.conv4(x)
        cat  = torch.cat([conv1, conv2, conv3, conv4], 1)
        out = self.convi(cat) + x
        return out

##############################UNetFace#########################
class AdaptiveInstanceNorm(nn.Module):
    def __init__(self, in_channel):
        super().__init__()
        self.norm = nn.InstanceNorm2d(in_channel)

    def forward(self, input, style):
        style_mean, style_std = calc_mean_std_4D(style)
        out = self.norm(input)
        size = input.size()
        out = style_std.expand(size) * out + style_mean.expand(size)
        return out

class BlurFunctionBackward(Function):
    @staticmethod
    def forward(ctx, grad_output, kernel, kernel_flip):
        ctx.save_for_backward(kernel, kernel_flip)

        grad_input = F.conv2d(
            grad_output, kernel_flip, padding=1, groups=grad_output.shape[1]
        )
        return grad_input

    @staticmethod
    def backward(ctx, gradgrad_output):
        kernel, kernel_flip = ctx.saved_tensors

        grad_input = F.conv2d(
            gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1]
        )
        return grad_input, None, None


class BlurFunction(Function):
    @staticmethod
    def forward(ctx, input, kernel, kernel_flip):
        ctx.save_for_backward(kernel, kernel_flip)

        output = F.conv2d(input, kernel, padding=1, groups=input.shape[1])

        return output

    @staticmethod
    def backward(ctx, grad_output):
        kernel, kernel_flip = ctx.saved_tensors

        grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)

        return grad_input, None, None

blur = BlurFunction.apply


class Blur(nn.Module):
    def __init__(self, channel):
        super().__init__()

        weight = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
        weight = weight.view(1, 1, 3, 3)
        weight = weight / weight.sum()
        weight_flip = torch.flip(weight, [2, 3])

        self.register_buffer('weight', weight.repeat(channel, 1, 1, 1))
        self.register_buffer('weight_flip', weight_flip.repeat(channel, 1, 1, 1))

    def forward(self, input):
        return blur(input, self.weight, self.weight_flip)

class EqualLR:
    def __init__(self, name):
        self.name = name

    def compute_weight(self, module):
        weight = getattr(module, self.name + '_orig')
        fan_in = weight.data.size(1) * weight.data[0][0].numel()
        return weight * sqrt(2 / fan_in)
    @staticmethod
    def apply(module, name):
        fn = EqualLR(name)

        weight = getattr(module, name)
        del module._parameters[name]
        module.register_parameter(name + '_orig', nn.Parameter(weight.data))
        module.register_forward_pre_hook(fn)

        return fn

    def __call__(self, module, input):
        weight = self.compute_weight(module)
        setattr(module, self.name, weight)

def equal_lr(module, name='weight'):
    EqualLR.apply(module, name)
    return module

class EqualConv2d(nn.Module):
    def __init__(self, *args, **kwargs):
        super().__init__()
        conv = nn.Conv2d(*args, **kwargs)
        conv.weight.data.normal_()
        conv.bias.data.zero_()
        self.conv = equal_lr(conv)
    def forward(self, input):
        return self.conv(input)

class NoiseInjection(nn.Module):
    def __init__(self, channel):
        super().__init__()
        self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
    def forward(self, image, noise):
        return image + self.weight * noise

class StyledUpBlock(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False):
        super().__init__()
        if upsample:
            self.conv1 = nn.Sequential(
                nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
                Blur(out_channel),
                # EqualConv2d(in_channel, out_channel, kernel_size, padding=padding),
                SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
                nn.LeakyReLU(0.2),
            )
        else:
            self.conv1 = nn.Sequential(
                Blur(in_channel),
                # EqualConv2d(in_channel, out_channel, kernel_size, padding=padding)
                SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
                nn.LeakyReLU(0.2),
            )
        self.convup = nn.Sequential(
                nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
                # EqualConv2d(out_channel, out_channel, kernel_size, padding=padding),
                SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
                nn.LeakyReLU(0.2),
                # Blur(out_channel),
            )
        # self.noise1 = equal_lr(NoiseInjection(out_channel))
        # self.adain1 = AdaptiveInstanceNorm(out_channel)
        self.lrelu1 = nn.LeakyReLU(0.2)

        # self.conv2 = EqualConv2d(out_channel, out_channel, kernel_size, padding=padding)
        # self.noise2 = equal_lr(NoiseInjection(out_channel))
        # self.adain2 = AdaptiveInstanceNorm(out_channel)
        # self.lrelu2 = nn.LeakyReLU(0.2)

        self.ScaleModel1 = nn.Sequential(
            # Blur(in_channel),
            SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
            # nn.Conv2d(in_channel,out_channel,3, 1, 1),
            nn.LeakyReLU(0.2, True),
            SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))
            # nn.Conv2d(out_channel, out_channel, 3, 1, 1)
        )
        self.ShiftModel1 = nn.Sequential(
            # Blur(in_channel),
            SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
            # nn.Conv2d(in_channel,out_channel,3, 1, 1),
            nn.LeakyReLU(0.2, True),
            SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)),
            nn.Sigmoid(),
            # nn.Conv2d(out_channel, out_channel, 3, 1, 1)
        )
       
    def forward(self, input, style):
        out = self.conv1(input)
#         out = self.noise1(out, noise)
        out = self.lrelu1(out)

        Shift1 = self.ShiftModel1(style)
        Scale1 = self.ScaleModel1(style)
        out = out * Scale1 + Shift1
        # out = self.adain1(out, style)
        outup = self.convup(out)

        return outup

##############################################################################
##Face Dictionary
##############################################################################
class VGGFeat(torch.nn.Module):
    """
    Input: (B, C, H, W), RGB, [-1, 1]
    """
    def __init__(self, weight_path='./weights/vgg19.pth'):
        super().__init__()
        self.model = models.vgg19(pretrained=False)
        self.build_vgg_layers()
        
        self.model.load_state_dict(torch.load(weight_path))

        self.register_parameter("RGB_mean", nn.Parameter(torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)))
        self.register_parameter("RGB_std", nn.Parameter(torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)))
        
        # self.model.eval()
        for param in self.model.parameters():
            param.requires_grad = False
    
    def build_vgg_layers(self):
        vgg_pretrained_features = self.model.features
        self.features = []
        # feature_layers = [0, 3, 8, 17, 26, 35]
        feature_layers = [0, 8, 17, 26, 35]
        for i in range(len(feature_layers)-1): 
            module_layers = torch.nn.Sequential() 
            for j in range(feature_layers[i], feature_layers[i+1]):
                module_layers.add_module(str(j), vgg_pretrained_features[j])
            self.features.append(module_layers)
        self.features = torch.nn.ModuleList(self.features)

    def preprocess(self, x):
        x = (x + 1) / 2
        x = (x - self.RGB_mean) / self.RGB_std
        if x.shape[3] < 224:
            x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bilinear', align_corners=False)
        return x

    def forward(self, x):
        x = self.preprocess(x)
        features = []
        for m in self.features:
            # print(m)
            x = m(x)
            features.append(x)
        return features 

def compute_sum(x, axis=None, keepdim=False):
    if not axis:
        axis = range(len(x.shape))
    for i in sorted(axis, reverse=True):
        x = torch.sum(x, dim=i, keepdim=keepdim)
    return x
def ToRGB(in_channel):
    return nn.Sequential(
        SpectralNorm(nn.Conv2d(in_channel,in_channel,3, 1, 1)),
        nn.LeakyReLU(0.2),
        SpectralNorm(nn.Conv2d(in_channel,3,3, 1, 1))
    )

def AttentionBlock(in_channel):
    return nn.Sequential(
        SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
        nn.LeakyReLU(0.2),
        SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1))
    )

class UNetDictFace(nn.Module):
    def __init__(self, ngf=64, dictionary_path='./DictionaryCenter512'):
        super().__init__()
        
        self.part_sizes = np.array([80,80,50,110]) # size for 512
        self.feature_sizes = np.array([256,128,64,32])
        self.channel_sizes = np.array([128,256,512,512])
        Parts = ['left_eye','right_eye','nose','mouth']
        self.Dict_256 = {}
        self.Dict_128 = {}
        self.Dict_64 = {}
        self.Dict_32 = {}
        for j,i in enumerate(Parts):
            f_256 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_256_center.npy'.format(i)), allow_pickle=True))

            f_256_reshape = f_256.reshape(f_256.size(0),self.channel_sizes[0],self.part_sizes[j]//2,self.part_sizes[j]//2)
            max_256 = torch.max(torch.sqrt(compute_sum(torch.pow(f_256_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
            self.Dict_256[i] = f_256_reshape #/ max_256
            
            f_128 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_128_center.npy'.format(i)), allow_pickle=True))

            f_128_reshape = f_128.reshape(f_128.size(0),self.channel_sizes[1],self.part_sizes[j]//4,self.part_sizes[j]//4)
            max_128 = torch.max(torch.sqrt(compute_sum(torch.pow(f_128_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
            self.Dict_128[i] = f_128_reshape #/ max_128

            f_64 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_64_center.npy'.format(i)), allow_pickle=True))

            f_64_reshape = f_64.reshape(f_64.size(0),self.channel_sizes[2],self.part_sizes[j]//8,self.part_sizes[j]//8)
            max_64 = torch.max(torch.sqrt(compute_sum(torch.pow(f_64_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
            self.Dict_64[i] = f_64_reshape #/ max_64

            f_32 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_32_center.npy'.format(i)), allow_pickle=True))

            f_32_reshape = f_32.reshape(f_32.size(0),self.channel_sizes[3],self.part_sizes[j]//16,self.part_sizes[j]//16)
            max_32 = torch.max(torch.sqrt(compute_sum(torch.pow(f_32_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
            self.Dict_32[i] = f_32_reshape #/ max_32

        self.le_256 = AttentionBlock(128)
        self.le_128 = AttentionBlock(256)
        self.le_64 = AttentionBlock(512)
        self.le_32 = AttentionBlock(512)

        self.re_256 = AttentionBlock(128)
        self.re_128 = AttentionBlock(256)
        self.re_64 = AttentionBlock(512)
        self.re_32 = AttentionBlock(512)

        self.no_256 = AttentionBlock(128)
        self.no_128 = AttentionBlock(256)
        self.no_64 = AttentionBlock(512)
        self.no_32 = AttentionBlock(512)

        self.mo_256 = AttentionBlock(128)
        self.mo_128 = AttentionBlock(256)
        self.mo_64 = AttentionBlock(512)
        self.mo_32 = AttentionBlock(512)

        #norm
        self.VggExtract = VGGFeat()
        
        ######################
        self.MSDilate = MSDilateBlock(ngf*8, dilation = [4,3,2,1])  #

        self.up0 = StyledUpBlock(ngf*8,ngf*8)
        self.up1 = StyledUpBlock(ngf*8, ngf*4) #
        self.up2 = StyledUpBlock(ngf*4, ngf*2) #
        self.up3 = StyledUpBlock(ngf*2, ngf) #
        self.up4 = nn.Sequential( # 128
            # nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
            SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
            # nn.BatchNorm2d(32),
            nn.LeakyReLU(0.2),
            UpResBlock(ngf),
            UpResBlock(ngf),
            # SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)),
            nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1),
            nn.Tanh()
        )
        self.to_rgb0 = ToRGB(ngf*8)
        self.to_rgb1 = ToRGB(ngf*4)
        self.to_rgb2 = ToRGB(ngf*2)
        self.to_rgb3 = ToRGB(ngf*1)

        # for param in self.BlurInputConv.parameters():
        #     param.requires_grad = False
    
    def forward(self,input, part_locations):

        VggFeatures = self.VggExtract(input)
        # for b in range(input.size(0)):
        b = 0
        UpdateVggFeatures = []
        for i, f_size in enumerate(self.feature_sizes):
            cur_feature = VggFeatures[i]
            update_feature = cur_feature.clone() #* 0
            cur_part_sizes = self.part_sizes // (512/f_size)

            dicts_feature = getattr(self, 'Dict_'+str(f_size))
            LE_Dict_feature = dicts_feature['left_eye'].to(input)
            RE_Dict_feature = dicts_feature['right_eye'].to(input)
            NO_Dict_feature = dicts_feature['nose'].to(input)
            MO_Dict_feature = dicts_feature['mouth'].to(input)

            le_location = (part_locations[0][b] // (512/f_size)).int()
            re_location = (part_locations[1][b] // (512/f_size)).int()
            no_location = (part_locations[2][b] // (512/f_size)).int()
            mo_location = (part_locations[3][b] // (512/f_size)).int()

            LE_feature = cur_feature[:,:,le_location[1]:le_location[3],le_location[0]:le_location[2]].clone()
            RE_feature = cur_feature[:,:,re_location[1]:re_location[3],re_location[0]:re_location[2]].clone()
            NO_feature = cur_feature[:,:,no_location[1]:no_location[3],no_location[0]:no_location[2]].clone()
            MO_feature = cur_feature[:,:,mo_location[1]:mo_location[3],mo_location[0]:mo_location[2]].clone()
            
            #resize
            LE_feature_resize = F.interpolate(LE_feature,(LE_Dict_feature.size(2),LE_Dict_feature.size(3)),mode='bilinear',align_corners=False)
            RE_feature_resize = F.interpolate(RE_feature,(RE_Dict_feature.size(2),RE_Dict_feature.size(3)),mode='bilinear',align_corners=False)
            NO_feature_resize = F.interpolate(NO_feature,(NO_Dict_feature.size(2),NO_Dict_feature.size(3)),mode='bilinear',align_corners=False)
            MO_feature_resize = F.interpolate(MO_feature,(MO_Dict_feature.size(2),MO_Dict_feature.size(3)),mode='bilinear',align_corners=False)

            LE_Dict_feature_norm = adaptive_instance_normalization_4D(LE_Dict_feature, LE_feature_resize)
            RE_Dict_feature_norm = adaptive_instance_normalization_4D(RE_Dict_feature, RE_feature_resize)
            NO_Dict_feature_norm = adaptive_instance_normalization_4D(NO_Dict_feature, NO_feature_resize)
            MO_Dict_feature_norm = adaptive_instance_normalization_4D(MO_Dict_feature, MO_feature_resize)
            
            LE_score = F.conv2d(LE_feature_resize, LE_Dict_feature_norm)

            LE_score = F.softmax(LE_score.view(-1),dim=0)
            LE_index = torch.argmax(LE_score)
            LE_Swap_feature = F.interpolate(LE_Dict_feature_norm[LE_index:LE_index+1], (LE_feature.size(2), LE_feature.size(3)))

            LE_Attention = getattr(self, 'le_'+str(f_size))(LE_Swap_feature-LE_feature)
            LE_Att_feature = LE_Attention * LE_Swap_feature
            

            RE_score = F.conv2d(RE_feature_resize, RE_Dict_feature_norm)
            RE_score = F.softmax(RE_score.view(-1),dim=0)
            RE_index = torch.argmax(RE_score)
            RE_Swap_feature = F.interpolate(RE_Dict_feature_norm[RE_index:RE_index+1], (RE_feature.size(2), RE_feature.size(3)))
            
            RE_Attention = getattr(self, 're_'+str(f_size))(RE_Swap_feature-RE_feature)
            RE_Att_feature = RE_Attention * RE_Swap_feature

            NO_score = F.conv2d(NO_feature_resize, NO_Dict_feature_norm)
            NO_score = F.softmax(NO_score.view(-1),dim=0)
            NO_index = torch.argmax(NO_score)
            NO_Swap_feature = F.interpolate(NO_Dict_feature_norm[NO_index:NO_index+1], (NO_feature.size(2), NO_feature.size(3)))
            
            NO_Attention = getattr(self, 'no_'+str(f_size))(NO_Swap_feature-NO_feature)
            NO_Att_feature = NO_Attention * NO_Swap_feature

            
            MO_score = F.conv2d(MO_feature_resize, MO_Dict_feature_norm)
            MO_score = F.softmax(MO_score.view(-1),dim=0)
            MO_index = torch.argmax(MO_score)
            MO_Swap_feature = F.interpolate(MO_Dict_feature_norm[MO_index:MO_index+1], (MO_feature.size(2), MO_feature.size(3)))
            
            MO_Attention = getattr(self, 'mo_'+str(f_size))(MO_Swap_feature-MO_feature)
            MO_Att_feature = MO_Attention * MO_Swap_feature

            update_feature[:,:,le_location[1]:le_location[3],le_location[0]:le_location[2]] = LE_Att_feature + LE_feature
            update_feature[:,:,re_location[1]:re_location[3],re_location[0]:re_location[2]] = RE_Att_feature + RE_feature
            update_feature[:,:,no_location[1]:no_location[3],no_location[0]:no_location[2]] = NO_Att_feature + NO_feature
            update_feature[:,:,mo_location[1]:mo_location[3],mo_location[0]:mo_location[2]] = MO_Att_feature + MO_feature

            UpdateVggFeatures.append(update_feature) 
        
        fea_vgg = self.MSDilate(VggFeatures[3])
        #new version
        fea_up0 = self.up0(fea_vgg, UpdateVggFeatures[3])
        # out1 = F.interpolate(fea_up0,(512,512))
        # out1 = self.to_rgb0(out1)

        fea_up1 = self.up1( fea_up0, UpdateVggFeatures[2]) #
        # out2 = F.interpolate(fea_up1,(512,512))
        # out2 = self.to_rgb1(out2)

        fea_up2 = self.up2(fea_up1, UpdateVggFeatures[1]) #
        # out3 = F.interpolate(fea_up2,(512,512))
        # out3 = self.to_rgb2(out3)

        fea_up3 = self.up3(fea_up2, UpdateVggFeatures[0]) #
        # out4 = F.interpolate(fea_up3,(512,512))
        # out4 = self.to_rgb3(out4)

        output = self.up4(fea_up3) #
        
    
        return output  #+ out4 + out3 + out2 + out1
        #0 128 * 256 * 256
        #1 256 * 128 * 128
        #2 512 * 64 * 64
        #3 512 * 32 * 32


class UpResBlock(nn.Module):
    def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d):
        super(UpResBlock, self).__init__()
        self.Model = nn.Sequential(
            # SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
            conv_layer(dim, dim, 3, 1, 1),
            # norm_layer(dim),
            nn.LeakyReLU(0.2,True),
            # SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
            conv_layer(dim, dim, 3, 1, 1),
        )
    def forward(self, x):
        out = x + self.Model(x)
        return out

class VggClassNet(nn.Module):
    def __init__(self, select_layer = ['0','5','10','19']):
        super(VggClassNet, self).__init__()
        self.select = select_layer
        self.vgg = models.vgg19(pretrained=True).features
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x):
        features = []
        for name, layer in self.vgg._modules.items():
            x = layer(x)
            if name in self.select:
                features.append(x)
        return features


if __name__ == '__main__':
    print('this is network')