Spaces:
Sleeping
Sleeping
File size: 27,183 Bytes
0f691e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import torch.nn.functional as F
from torch.nn import Parameter as P
from util import util
from torchvision import models
import scipy.io as sio
import numpy as np
import scipy.ndimage
import torch.nn.utils.spectral_norm as SpectralNorm
from torch.autograd import Function
from math import sqrt
import random
import os
import math
from sync_batchnorm import convert_model
####
###############################################################################
# Helper Functions
###############################################################################
def get_norm_layer(norm_type='instance'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=True)
elif norm_type == 'none':
norm_layer = None
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def get_scheduler(optimizer, opt):
if opt.lr_policy == 'lambda':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[], init_flag=True):
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
net = convert_model(net)
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids)
if init_flag:
init_weights(net, init_type, gain=init_gain)
return net
# compute adaptive instance norm
def calc_mean_std(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 3)
C, _ = size[:2]
feat_var = feat.contiguous().view(C, -1).var(dim=1) + eps
feat_std = feat_var.sqrt().view(C, 1, 1)
feat_mean = feat.contiguous().view(C, -1).mean(dim=1).view(C, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat): # content_feat is degraded feature, style is ref feature
assert (content_feat.size()[:1] == style_feat.size()[:1])
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(
size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def calc_mean_std_4D(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature
# assert (content_feat.size()[:2] == style_feat.size()[:2])
size = content_feat.size()
style_mean, style_std = calc_mean_std_4D(style_feat)
content_mean, content_std = calc_mean_std_4D(content_feat)
normalized_feat = (content_feat - content_mean.expand(
size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def define_G(which_model_netG, gpu_ids=[]):
if which_model_netG == 'UNetDictFace':
netG = UNetDictFace(64)
init_flag = False
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG)
return init_net(netG, 'normal', 0.02, gpu_ids, init_flag)
##############################################################################
# Classes
############################################################################################################################################
def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True):
return nn.Sequential(
SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
# conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias),
# nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2),
SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
)
class MSDilateBlock(nn.Module):
def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True):
super(MSDilateBlock, self).__init__()
self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias)
self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias)
self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias)
self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias)
self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias))
def forward(self, x):
conv1 = self.conv1(x)
conv2 = self.conv2(x)
conv3 = self.conv3(x)
conv4 = self.conv4(x)
cat = torch.cat([conv1, conv2, conv3, conv4], 1)
out = self.convi(cat) + x
return out
##############################UNetFace#########################
class AdaptiveInstanceNorm(nn.Module):
def __init__(self, in_channel):
super().__init__()
self.norm = nn.InstanceNorm2d(in_channel)
def forward(self, input, style):
style_mean, style_std = calc_mean_std_4D(style)
out = self.norm(input)
size = input.size()
out = style_std.expand(size) * out + style_mean.expand(size)
return out
class BlurFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, kernel_flip):
ctx.save_for_backward(kernel, kernel_flip)
grad_input = F.conv2d(
grad_output, kernel_flip, padding=1, groups=grad_output.shape[1]
)
return grad_input
@staticmethod
def backward(ctx, gradgrad_output):
kernel, kernel_flip = ctx.saved_tensors
grad_input = F.conv2d(
gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1]
)
return grad_input, None, None
class BlurFunction(Function):
@staticmethod
def forward(ctx, input, kernel, kernel_flip):
ctx.save_for_backward(kernel, kernel_flip)
output = F.conv2d(input, kernel, padding=1, groups=input.shape[1])
return output
@staticmethod
def backward(ctx, grad_output):
kernel, kernel_flip = ctx.saved_tensors
grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)
return grad_input, None, None
blur = BlurFunction.apply
class Blur(nn.Module):
def __init__(self, channel):
super().__init__()
weight = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
weight = weight.view(1, 1, 3, 3)
weight = weight / weight.sum()
weight_flip = torch.flip(weight, [2, 3])
self.register_buffer('weight', weight.repeat(channel, 1, 1, 1))
self.register_buffer('weight_flip', weight_flip.repeat(channel, 1, 1, 1))
def forward(self, input):
return blur(input, self.weight, self.weight_flip)
class EqualLR:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
fan_in = weight.data.size(1) * weight.data[0][0].numel()
return weight * sqrt(2 / fan_in)
@staticmethod
def apply(module, name):
fn = EqualLR(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight = self.compute_weight(module)
setattr(module, self.name, weight)
def equal_lr(module, name='weight'):
EqualLR.apply(module, name)
return module
class EqualConv2d(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
conv = nn.Conv2d(*args, **kwargs)
conv.weight.data.normal_()
conv.bias.data.zero_()
self.conv = equal_lr(conv)
def forward(self, input):
return self.conv(input)
class NoiseInjection(nn.Module):
def __init__(self, channel):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
def forward(self, image, noise):
return image + self.weight * noise
class StyledUpBlock(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False):
super().__init__()
if upsample:
self.conv1 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
Blur(out_channel),
# EqualConv2d(in_channel, out_channel, kernel_size, padding=padding),
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
nn.LeakyReLU(0.2),
)
else:
self.conv1 = nn.Sequential(
Blur(in_channel),
# EqualConv2d(in_channel, out_channel, kernel_size, padding=padding)
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
nn.LeakyReLU(0.2),
)
self.convup = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
# EqualConv2d(out_channel, out_channel, kernel_size, padding=padding),
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
nn.LeakyReLU(0.2),
# Blur(out_channel),
)
# self.noise1 = equal_lr(NoiseInjection(out_channel))
# self.adain1 = AdaptiveInstanceNorm(out_channel)
self.lrelu1 = nn.LeakyReLU(0.2)
# self.conv2 = EqualConv2d(out_channel, out_channel, kernel_size, padding=padding)
# self.noise2 = equal_lr(NoiseInjection(out_channel))
# self.adain2 = AdaptiveInstanceNorm(out_channel)
# self.lrelu2 = nn.LeakyReLU(0.2)
self.ScaleModel1 = nn.Sequential(
# Blur(in_channel),
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
# nn.Conv2d(in_channel,out_channel,3, 1, 1),
nn.LeakyReLU(0.2, True),
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))
# nn.Conv2d(out_channel, out_channel, 3, 1, 1)
)
self.ShiftModel1 = nn.Sequential(
# Blur(in_channel),
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
# nn.Conv2d(in_channel,out_channel,3, 1, 1),
nn.LeakyReLU(0.2, True),
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)),
nn.Sigmoid(),
# nn.Conv2d(out_channel, out_channel, 3, 1, 1)
)
def forward(self, input, style):
out = self.conv1(input)
# out = self.noise1(out, noise)
out = self.lrelu1(out)
Shift1 = self.ShiftModel1(style)
Scale1 = self.ScaleModel1(style)
out = out * Scale1 + Shift1
# out = self.adain1(out, style)
outup = self.convup(out)
return outup
##############################################################################
##Face Dictionary
##############################################################################
class VGGFeat(torch.nn.Module):
"""
Input: (B, C, H, W), RGB, [-1, 1]
"""
def __init__(self, weight_path='./weights/vgg19.pth'):
super().__init__()
self.model = models.vgg19(pretrained=False)
self.build_vgg_layers()
self.model.load_state_dict(torch.load(weight_path))
self.register_parameter("RGB_mean", nn.Parameter(torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)))
self.register_parameter("RGB_std", nn.Parameter(torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)))
# self.model.eval()
for param in self.model.parameters():
param.requires_grad = False
def build_vgg_layers(self):
vgg_pretrained_features = self.model.features
self.features = []
# feature_layers = [0, 3, 8, 17, 26, 35]
feature_layers = [0, 8, 17, 26, 35]
for i in range(len(feature_layers)-1):
module_layers = torch.nn.Sequential()
for j in range(feature_layers[i], feature_layers[i+1]):
module_layers.add_module(str(j), vgg_pretrained_features[j])
self.features.append(module_layers)
self.features = torch.nn.ModuleList(self.features)
def preprocess(self, x):
x = (x + 1) / 2
x = (x - self.RGB_mean) / self.RGB_std
if x.shape[3] < 224:
x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bilinear', align_corners=False)
return x
def forward(self, x):
x = self.preprocess(x)
features = []
for m in self.features:
# print(m)
x = m(x)
features.append(x)
return features
def compute_sum(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.sum(x, dim=i, keepdim=keepdim)
return x
def ToRGB(in_channel):
return nn.Sequential(
SpectralNorm(nn.Conv2d(in_channel,in_channel,3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(in_channel,3,3, 1, 1))
)
def AttentionBlock(in_channel):
return nn.Sequential(
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1))
)
class UNetDictFace(nn.Module):
def __init__(self, ngf=64, dictionary_path='./DictionaryCenter512'):
super().__init__()
self.part_sizes = np.array([80,80,50,110]) # size for 512
self.feature_sizes = np.array([256,128,64,32])
self.channel_sizes = np.array([128,256,512,512])
Parts = ['left_eye','right_eye','nose','mouth']
self.Dict_256 = {}
self.Dict_128 = {}
self.Dict_64 = {}
self.Dict_32 = {}
for j,i in enumerate(Parts):
f_256 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_256_center.npy'.format(i)), allow_pickle=True))
f_256_reshape = f_256.reshape(f_256.size(0),self.channel_sizes[0],self.part_sizes[j]//2,self.part_sizes[j]//2)
max_256 = torch.max(torch.sqrt(compute_sum(torch.pow(f_256_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
self.Dict_256[i] = f_256_reshape #/ max_256
f_128 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_128_center.npy'.format(i)), allow_pickle=True))
f_128_reshape = f_128.reshape(f_128.size(0),self.channel_sizes[1],self.part_sizes[j]//4,self.part_sizes[j]//4)
max_128 = torch.max(torch.sqrt(compute_sum(torch.pow(f_128_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
self.Dict_128[i] = f_128_reshape #/ max_128
f_64 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_64_center.npy'.format(i)), allow_pickle=True))
f_64_reshape = f_64.reshape(f_64.size(0),self.channel_sizes[2],self.part_sizes[j]//8,self.part_sizes[j]//8)
max_64 = torch.max(torch.sqrt(compute_sum(torch.pow(f_64_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
self.Dict_64[i] = f_64_reshape #/ max_64
f_32 = torch.from_numpy(np.load(os.path.join(dictionary_path, '{}_32_center.npy'.format(i)), allow_pickle=True))
f_32_reshape = f_32.reshape(f_32.size(0),self.channel_sizes[3],self.part_sizes[j]//16,self.part_sizes[j]//16)
max_32 = torch.max(torch.sqrt(compute_sum(torch.pow(f_32_reshape, 2), axis=[1, 2, 3], keepdim=True)),torch.FloatTensor([1e-4]))
self.Dict_32[i] = f_32_reshape #/ max_32
self.le_256 = AttentionBlock(128)
self.le_128 = AttentionBlock(256)
self.le_64 = AttentionBlock(512)
self.le_32 = AttentionBlock(512)
self.re_256 = AttentionBlock(128)
self.re_128 = AttentionBlock(256)
self.re_64 = AttentionBlock(512)
self.re_32 = AttentionBlock(512)
self.no_256 = AttentionBlock(128)
self.no_128 = AttentionBlock(256)
self.no_64 = AttentionBlock(512)
self.no_32 = AttentionBlock(512)
self.mo_256 = AttentionBlock(128)
self.mo_128 = AttentionBlock(256)
self.mo_64 = AttentionBlock(512)
self.mo_32 = AttentionBlock(512)
#norm
self.VggExtract = VGGFeat()
######################
self.MSDilate = MSDilateBlock(ngf*8, dilation = [4,3,2,1]) #
self.up0 = StyledUpBlock(ngf*8,ngf*8)
self.up1 = StyledUpBlock(ngf*8, ngf*4) #
self.up2 = StyledUpBlock(ngf*4, ngf*2) #
self.up3 = StyledUpBlock(ngf*2, ngf) #
self.up4 = nn.Sequential( # 128
# nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
# nn.BatchNorm2d(32),
nn.LeakyReLU(0.2),
UpResBlock(ngf),
UpResBlock(ngf),
# SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)),
nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1),
nn.Tanh()
)
self.to_rgb0 = ToRGB(ngf*8)
self.to_rgb1 = ToRGB(ngf*4)
self.to_rgb2 = ToRGB(ngf*2)
self.to_rgb3 = ToRGB(ngf*1)
# for param in self.BlurInputConv.parameters():
# param.requires_grad = False
def forward(self,input, part_locations):
VggFeatures = self.VggExtract(input)
# for b in range(input.size(0)):
b = 0
UpdateVggFeatures = []
for i, f_size in enumerate(self.feature_sizes):
cur_feature = VggFeatures[i]
update_feature = cur_feature.clone() #* 0
cur_part_sizes = self.part_sizes // (512/f_size)
dicts_feature = getattr(self, 'Dict_'+str(f_size))
LE_Dict_feature = dicts_feature['left_eye'].to(input)
RE_Dict_feature = dicts_feature['right_eye'].to(input)
NO_Dict_feature = dicts_feature['nose'].to(input)
MO_Dict_feature = dicts_feature['mouth'].to(input)
le_location = (part_locations[0][b] // (512/f_size)).int()
re_location = (part_locations[1][b] // (512/f_size)).int()
no_location = (part_locations[2][b] // (512/f_size)).int()
mo_location = (part_locations[3][b] // (512/f_size)).int()
LE_feature = cur_feature[:,:,le_location[1]:le_location[3],le_location[0]:le_location[2]].clone()
RE_feature = cur_feature[:,:,re_location[1]:re_location[3],re_location[0]:re_location[2]].clone()
NO_feature = cur_feature[:,:,no_location[1]:no_location[3],no_location[0]:no_location[2]].clone()
MO_feature = cur_feature[:,:,mo_location[1]:mo_location[3],mo_location[0]:mo_location[2]].clone()
#resize
LE_feature_resize = F.interpolate(LE_feature,(LE_Dict_feature.size(2),LE_Dict_feature.size(3)),mode='bilinear',align_corners=False)
RE_feature_resize = F.interpolate(RE_feature,(RE_Dict_feature.size(2),RE_Dict_feature.size(3)),mode='bilinear',align_corners=False)
NO_feature_resize = F.interpolate(NO_feature,(NO_Dict_feature.size(2),NO_Dict_feature.size(3)),mode='bilinear',align_corners=False)
MO_feature_resize = F.interpolate(MO_feature,(MO_Dict_feature.size(2),MO_Dict_feature.size(3)),mode='bilinear',align_corners=False)
LE_Dict_feature_norm = adaptive_instance_normalization_4D(LE_Dict_feature, LE_feature_resize)
RE_Dict_feature_norm = adaptive_instance_normalization_4D(RE_Dict_feature, RE_feature_resize)
NO_Dict_feature_norm = adaptive_instance_normalization_4D(NO_Dict_feature, NO_feature_resize)
MO_Dict_feature_norm = adaptive_instance_normalization_4D(MO_Dict_feature, MO_feature_resize)
LE_score = F.conv2d(LE_feature_resize, LE_Dict_feature_norm)
LE_score = F.softmax(LE_score.view(-1),dim=0)
LE_index = torch.argmax(LE_score)
LE_Swap_feature = F.interpolate(LE_Dict_feature_norm[LE_index:LE_index+1], (LE_feature.size(2), LE_feature.size(3)))
LE_Attention = getattr(self, 'le_'+str(f_size))(LE_Swap_feature-LE_feature)
LE_Att_feature = LE_Attention * LE_Swap_feature
RE_score = F.conv2d(RE_feature_resize, RE_Dict_feature_norm)
RE_score = F.softmax(RE_score.view(-1),dim=0)
RE_index = torch.argmax(RE_score)
RE_Swap_feature = F.interpolate(RE_Dict_feature_norm[RE_index:RE_index+1], (RE_feature.size(2), RE_feature.size(3)))
RE_Attention = getattr(self, 're_'+str(f_size))(RE_Swap_feature-RE_feature)
RE_Att_feature = RE_Attention * RE_Swap_feature
NO_score = F.conv2d(NO_feature_resize, NO_Dict_feature_norm)
NO_score = F.softmax(NO_score.view(-1),dim=0)
NO_index = torch.argmax(NO_score)
NO_Swap_feature = F.interpolate(NO_Dict_feature_norm[NO_index:NO_index+1], (NO_feature.size(2), NO_feature.size(3)))
NO_Attention = getattr(self, 'no_'+str(f_size))(NO_Swap_feature-NO_feature)
NO_Att_feature = NO_Attention * NO_Swap_feature
MO_score = F.conv2d(MO_feature_resize, MO_Dict_feature_norm)
MO_score = F.softmax(MO_score.view(-1),dim=0)
MO_index = torch.argmax(MO_score)
MO_Swap_feature = F.interpolate(MO_Dict_feature_norm[MO_index:MO_index+1], (MO_feature.size(2), MO_feature.size(3)))
MO_Attention = getattr(self, 'mo_'+str(f_size))(MO_Swap_feature-MO_feature)
MO_Att_feature = MO_Attention * MO_Swap_feature
update_feature[:,:,le_location[1]:le_location[3],le_location[0]:le_location[2]] = LE_Att_feature + LE_feature
update_feature[:,:,re_location[1]:re_location[3],re_location[0]:re_location[2]] = RE_Att_feature + RE_feature
update_feature[:,:,no_location[1]:no_location[3],no_location[0]:no_location[2]] = NO_Att_feature + NO_feature
update_feature[:,:,mo_location[1]:mo_location[3],mo_location[0]:mo_location[2]] = MO_Att_feature + MO_feature
UpdateVggFeatures.append(update_feature)
fea_vgg = self.MSDilate(VggFeatures[3])
#new version
fea_up0 = self.up0(fea_vgg, UpdateVggFeatures[3])
# out1 = F.interpolate(fea_up0,(512,512))
# out1 = self.to_rgb0(out1)
fea_up1 = self.up1( fea_up0, UpdateVggFeatures[2]) #
# out2 = F.interpolate(fea_up1,(512,512))
# out2 = self.to_rgb1(out2)
fea_up2 = self.up2(fea_up1, UpdateVggFeatures[1]) #
# out3 = F.interpolate(fea_up2,(512,512))
# out3 = self.to_rgb2(out3)
fea_up3 = self.up3(fea_up2, UpdateVggFeatures[0]) #
# out4 = F.interpolate(fea_up3,(512,512))
# out4 = self.to_rgb3(out4)
output = self.up4(fea_up3) #
return output #+ out4 + out3 + out2 + out1
#0 128 * 256 * 256
#1 256 * 128 * 128
#2 512 * 64 * 64
#3 512 * 32 * 32
class UpResBlock(nn.Module):
def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d):
super(UpResBlock, self).__init__()
self.Model = nn.Sequential(
# SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
conv_layer(dim, dim, 3, 1, 1),
# norm_layer(dim),
nn.LeakyReLU(0.2,True),
# SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
conv_layer(dim, dim, 3, 1, 1),
)
def forward(self, x):
out = x + self.Model(x)
return out
class VggClassNet(nn.Module):
def __init__(self, select_layer = ['0','5','10','19']):
super(VggClassNet, self).__init__()
self.select = select_layer
self.vgg = models.vgg19(pretrained=True).features
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
features = []
for name, layer in self.vgg._modules.items():
x = layer(x)
if name in self.select:
features.append(x)
return features
if __name__ == '__main__':
print('this is network')
|