File size: 4,122 Bytes
0f691e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -- coding: utf-8 --
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import torchvision

# Converts a Tensor into an image array (numpy)
# |imtype|: the desired type of the converted numpy array
def tensor2im(input_image, norm=1, imtype=np.uint8):
    if isinstance(input_image, torch.Tensor):
        image_tensor = input_image.data
    else:
        return input_image
    if norm == 1: #for clamp -1 to 1
        image_numpy = image_tensor[0].cpu().float().clamp_(-1,1).numpy()
    elif norm == 2: # for norm through max-min
        image_ = image_tensor[0].cpu().float()
        max_ = torch.max(image_)
        min_ = torch.min(image_)
        image_numpy = (image_ - min_)/(max_-min_)*2-1
        image_numpy = image_numpy.numpy() 
    else:
        pass
    if image_numpy.shape[0] == 1:
        image_numpy = np.tile(image_numpy, (3, 1, 1))
    # print(image_numpy.shape)
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
    # print(image_numpy.shape)
    return image_numpy.astype(imtype)
def tensor2im3Channels(input_image, imtype=np.uint8):
    if isinstance(input_image, torch.Tensor):
        image_tensor = input_image.data
    else:
        return input_image
    
    image_numpy = image_tensor.cpu().float().clamp_(-1,1).numpy()

    # print(image_numpy.shape)
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
    # print(image_numpy.shape)
    return image_numpy.astype(imtype)

def diagnose_network(net, name='network'):
    mean = 0.0
    count = 0
    for param in net.parameters():
        if param.grad is not None:
            mean += torch.mean(torch.abs(param.grad.data))
            count += 1
    if count > 0:
        mean = mean / count
    print(name)
    print(mean)




def print_numpy(x, val=True, shp=False):
    x = x.astype(np.float64)
    if shp:
        print('shape,', x.shape)
    if val:
        x = x.flatten()
        print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
            np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))


def mkdirs(paths):
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def print_current_losses(epoch, i, losses, t, t_data):
        message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, i, t, t_data)
        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)

        print(message)
        # with open('', "a") as log_file:
        #     log_file.write('%s\n' % message)

def display_current_results(writer,visuals,losses,step,save_result):
    for label, images in visuals.items():
        if 'Mask' in label:#  or 'Scale' in label:
            grid = torchvision.utils.make_grid(images,normalize=False, scale_each=True)
            # pass
        else:
            pass
        grid = torchvision.utils.make_grid(images,normalize=True, scale_each=True)
        writer.add_image(label,grid,step)
    for k,v in losses.items():
        writer.add_scalar(k,v,step)

def VisualFeature(input_feature, imtype=np.uint8):
    if isinstance(input_feature, torch.Tensor):
        image_tensor = input_feature.data
    else:
        return input_feature
    
    image_ = image_tensor.cpu().float()

    if image_.size(1) == 3:
        image_ = image_.permute(1,2,0)

    # assert(image_.size(1) == 1)


    
    #####norm 0 to 1
    max_ = torch.max(image_)
    min_ = torch.min(image_)
    image_numpy = (image_ - min_)/(max_-min_)*2-1
    image_numpy = image_numpy.numpy()
    image_numpy = (image_numpy + 1) / 2.0 * 255.0
    #####no norm
    # print((max_,min_))
    # image_numpy = image_.numpy()
    # image_numpy = image_numpy*255.0


    # print('wwwwwwwwwwwwww')
    # print(max_)
    # print(min_)
    # print(image_numpy.shape)
    return image_numpy.astype(imtype)


def save_image(image_numpy, image_path):
    image_pil = Image.fromarray(image_numpy)
    image_pil.save(image_path)