File size: 10,016 Bytes
0f691e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import numpy as np
import os
import ntpath
import time
from . import util
from . import html
# from scipy.misc import imresize


# save image to the disk
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
    image_dir = webpage.get_image_dir()
    if isinstance(image_path,list):
        image_path = image_path[0]
    short_path = ntpath.basename(image_path)
    
    name = os.path.splitext(short_path)[0]

    webpage.add_header(name)
    ims, txts, links = [], [], []

    for label, im_data in visuals.items():
        im = util.tensor2im(im_data)
        # image_name = '%s_%s.png' % (name, label)
        # save_path = os.path.join(image_dir, image_name)
        image_name = '%s.png' % (name)
        
        util.mkdirs(os.path.join(image_dir, label))
        save_path = os.path.join(image_dir, label, image_name)
        
        h, w, _ = im.shape
#         if aspect_ratio > 1.0:
#             im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic')
#         if aspect_ratio < 1.0:
#             im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic')

        util.save_image(im, save_path)

        link_name = os.path.join(label,image_name)
        ims.append(link_name)
        txts.append(label)
        links.append(link_name)
    webpage.add_images(ims, txts, links, width=width)

def save_crop(visuals, save_path):
    im_data = visuals['fake_A']
    im = util.tensor2im(im_data)
    util.save_image(im, save_path)

# save image to the disk
def save_images_test(webpage, visuals, image_dir, image_path, aspect_ratio=1.0, width=256):
    # image_dir = webpage.get_image_dir()
    if isinstance(image_path,list):
        image_path = image_path[0]
    short_path = ntpath.basename(image_path)
    
    name = os.path.splitext(short_path)[0]

    webpage.add_header(name)
    ims, txts, links = [], [], []

    for label, im_data in visuals.items():
        im = util.tensor2im(im_data)
        # image_name = '%s_%s.png' % (name, label)
        # save_path = os.path.join(image_dir, image_name)
        image_name = '%s.png' % (name)
        
        util.mkdirs(os.path.join(image_dir, label))
        save_path = os.path.join(image_dir, label, image_name)

        exit('wwwwwwwwwwwww')

        
        h, w, _ = im.shape
#         if aspect_ratio > 1.0:
#             im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic')
#         if aspect_ratio < 1.0:
#             im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic')

        util.save_image(im, save_path)

        link_name = os.path.join(label,image_name)
        ims.append(link_name)
        txts.append(label)
        links.append(link_name)
    webpage.add_images(ims, txts, links, width=width)

# save image to the disk 
# Original Version
# def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
#     image_dir = webpage.get_image_dir()
#     short_path = ntpath.basename(image_path[0])
#     name = os.path.splitext(short_path)[0]

#     webpage.add_header(name)
#     ims, txts, links = [], [], []

#     for label, im_data in visuals.items():
#         im = util.tensor2im(im_data)
#         image_name = '%s_%s.png' % (name, label)
#         save_path = os.path.join(image_dir, image_name)
#         h, w, _ = im.shape
#         if aspect_ratio > 1.0:
#             im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic')
#         if aspect_ratio < 1.0:
#             im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic')
#         util.save_image(im, save_path)

#         ims.append(image_name)
#         txts.append(label)
#         links.append(image_name)
#     webpage.add_images(ims, txts, links, width=width)


class Visualizer():
    def __init__(self, opt):
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        self.opt = opt
        self.saved = False
        if self.display_id > 0:
            import visdom
            self.ncols = opt.display_ncols
            self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env, raise_exceptions=True)

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
        with open(self.log_name, "a") as log_file:
            now = time.strftime("%c")
            log_file.write('================ Training Loss (%s) ================\n' % now)

    def reset(self):
        self.saved = False

    def throw_visdom_connection_error(self):
        print('\n\nCould not connect to Visdom server (https://github.com/facebookresearch/visdom) for displaying training progress.\nYou can suppress connection to Visdom using the option --display_id -1. To install visdom, run \n$ pip install visdom\n, and start the server by \n$ python -m visdom.server.\n\n')
        exit(1)

    # |visuals|: dictionary of images to display or save
    def display_current_results(self, visuals, epoch, save_result):
        if self.display_id > 0:  # show images in the browser
            ncols = self.ncols
            if ncols > 0:
                ncols = min(ncols, len(visuals))
                h, w = next(iter(visuals.values())).shape[:2]
                table_css = """<style>
                        table {border-collapse: separate; border-spacing:4px; white-space:nowrap; text-align:center}
                        table td {width: %dpx; height: %dpx; padding: 4px; outline: 4px solid black}
                        </style>""" % (w, h)
                title = self.name
                label_html = ''
                label_html_row = ''
                images = []
                idx = 0
                for label, image in visuals.items():
                    image_numpy = util.tensor2im(image)
                    label_html_row += '<td>%s</td>' % label
                    images.append(image_numpy.transpose([2, 0, 1]))
                    idx += 1
                    if idx % ncols == 0:
                        label_html += '<tr>%s</tr>' % label_html_row
                        label_html_row = ''
                white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255
                while idx % ncols != 0:
                    images.append(white_image)
                    label_html_row += '<td></td>'
                    idx += 1
                if label_html_row != '':
                    label_html += '<tr>%s</tr>' % label_html_row
                # pane col = image row
                try:
                    self.vis.images(images, nrow=ncols, win=self.display_id + 1,
                                    padding=2, opts=dict(title=title + ' images'))
                    label_html = '<table>%s</table>' % label_html
                    self.vis.text(table_css + label_html, win=self.display_id + 2,
                                  opts=dict(title=title + ' labels'))
                except ConnectionError:
                    self.throw_visdom_connection_error()

            else:
                idx = 1
                for label, image in visuals.items():
                    image_numpy = util.tensor2im(image)
                    self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label),
                                   win=self.display_id + idx)
                    idx += 1

        if self.use_html and (save_result or not self.saved):  # save images to a html file
            self.saved = True
            for label, image in visuals.items():
                image_numpy = util.tensor2im(image)
                img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
                util.save_image(image_numpy, img_path)
            # update website
            webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, reflesh=1)
            for n in range(epoch, 0, -1):
                webpage.add_header('epoch [%d]' % n)
                ims, txts, links = [], [], []

                for label, image_numpy in visuals.items():
                    image_numpy = util.tensor2im(image)
                    img_path = 'epoch%.3d_%s.png' % (n, label)
                    ims.append(img_path)
                    txts.append(label)
                    links.append(img_path)
                webpage.add_images(ims, txts, links, width=self.win_size)
            webpage.save()

    # losses: dictionary of error labels and values
    def plot_current_losses(self, epoch, counter_ratio, opt, losses):
        if not hasattr(self, 'plot_data'):
            self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())}
        self.plot_data['X'].append(epoch + counter_ratio)
        self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']])
        try:
            self.vis.line(
                X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
                Y=np.array(self.plot_data['Y']),
                opts={
                    'title': self.name + ' loss over time',
                    'legend': self.plot_data['legend'],
                    'xlabel': 'epoch',
                    'ylabel': 'loss'},
                win=self.display_id)
        except ConnectionError:
            self.throw_visdom_connection_error()

    # losses: same format as |losses| of plot_current_losses
    def print_current_losses(self, epoch, i, losses, t, t_data):
        message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, i, t, t_data)
        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)

        print(message)
        with open(self.log_name, "a") as log_file:
            log_file.write('%s\n' % message)