File size: 5,314 Bytes
0f691e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -- coding: utf-8 --
import os.path
import random
import torchvision.transforms as transforms
import torch
from data.base_dataset import BaseDataset
from data.image_folder import make_dataset
from PIL import Image, ImageFilter
import numpy as np
import cv2
import math
from util import util
from scipy.io import loadmat
from PIL import Image
import PIL


class AlignedDataset(BaseDataset):
    @staticmethod
    def modify_commandline_options(parser, is_train):
        return parser

    def initialize(self, opt):
        self.opt = opt
        self.root = opt.dataroot
        self.partpath = opt.partroot
        self.dir_AB = os.path.join(opt.dataroot, opt.phase)
        self.AB_paths = sorted(make_dataset(self.dir_AB))
        self.is_real = opt.is_real
        # assert(opt.resize_or_crop == 'resize_and_crop')
        assert(opt.resize_or_crop == 'degradation')   

    def AddNoise(self,img): # noise
        if random.random() > 0.9: #
            return img
        self.sigma = np.random.randint(1, 11)
        img_tensor = torch.from_numpy(np.array(img)).float()
        noise = torch.randn(img_tensor.size()).mul_(self.sigma/1.0)

        noiseimg = torch.clamp(noise+img_tensor,0,255)
        return Image.fromarray(np.uint8(noiseimg.numpy()))

    def AddBlur(self,img): # gaussian blur or motion blur
        if random.random() > 0.9: #
            return img
        img = np.array(img)
        if random.random() > 0.35: ##gaussian blur
            blursize = random.randint(1,17) * 2 + 1 ##3,5,7,9,11,13,15
            blursigma = random.randint(3, 20)
            img = cv2.GaussianBlur(img, (blursize,blursize), blursigma/10)
        else: #motion blur
            M = random.randint(1,32)
            KName = './data/MotionBlurKernel/m_%02d.mat' % M
            k = loadmat(KName)['kernel']
            k = k.astype(np.float32)
            k /= np.sum(k)
            img = cv2.filter2D(img,-1,k)
        return Image.fromarray(img)

    def AddDownSample(self,img): # downsampling
        if random.random() > 0.95: #
            return img
        sampler = random.randint(20, 100)*1.0
        img = img.resize((int(self.opt.fineSize/sampler*10.0), int(self.opt.fineSize/sampler*10.0)), Image.BICUBIC)
        return img

    def AddJPEG(self,img): # JPEG compression
        if random.random() > 0.6: #
            return img
        imQ = random.randint(40, 80)
        img = np.array(img)
        encode_param = [int(cv2.IMWRITE_JPEG_QUALITY),imQ] # (0,100),higher is better,default is 95
        _, encA = cv2.imencode('.jpg',img,encode_param)
        img = cv2.imdecode(encA,1)
        return Image.fromarray(img)

    def AddUpSample(self,img):
        return img.resize((self.opt.fineSize, self.opt.fineSize), Image.BICUBIC)

    def __getitem__(self, index): # 

        AB_path = self.AB_paths[index]
        Imgs = Image.open(AB_path).convert('RGB')
        # # 
        A = Imgs.resize((self.opt.fineSize, self.opt.fineSize))
        A = transforms.ColorJitter(0.3, 0.3, 0.3, 0)(A)
        C = A
        A = self.AddUpSample(self.AddJPEG(self.AddNoise(self.AddDownSample(self.AddBlur(A)))))

        tmps = AB_path.split('/')
        ImgName = tmps[-1]
        Part_locations = self.get_part_location(self.partpath, ImgName, 2)
   
        A = transforms.ToTensor()(A) # 
        C = transforms.ToTensor()(C)
        
        ##
        A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A) # 
        C = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(C) # 
        return {'A':A, 'C':C, 'A_paths': AB_path,'Part_locations': Part_locations}

    def get_part_location(self, landmarkpath, imgname, downscale=1):
        Landmarks = []
        with open(os.path.join(landmarkpath,imgname+'.txt'),'r') as f:
            for line in f:
                tmp = [np.float(i) for i in line.split(' ') if i != '\n']
                Landmarks.append(tmp)
        Landmarks = np.array(Landmarks)/downscale # 512 * 512
        
        Map_LE = list(np.hstack((range(17,22), range(36,42))))
        Map_RE = list(np.hstack((range(22,27), range(42,48))))
        Map_NO = list(range(29,36))
        Map_MO = list(range(48,68))
        #left eye
        Mean_LE = np.mean(Landmarks[Map_LE],0)
        L_LE = np.max((np.max(np.max(Landmarks[Map_LE],0) - np.min(Landmarks[Map_LE],0))/2,16))
        Location_LE = np.hstack((Mean_LE - L_LE + 1, Mean_LE + L_LE)).astype(int)
        #right eye
        Mean_RE = np.mean(Landmarks[Map_RE],0)
        L_RE = np.max((np.max(np.max(Landmarks[Map_RE],0) - np.min(Landmarks[Map_RE],0))/2,16))
        Location_RE = np.hstack((Mean_RE - L_RE + 1, Mean_RE + L_RE)).astype(int)
        #nose
        Mean_NO = np.mean(Landmarks[Map_NO],0)
        L_NO = np.max((np.max(np.max(Landmarks[Map_NO],0) - np.min(Landmarks[Map_NO],0))/2,16))
        Location_NO = np.hstack((Mean_NO - L_NO + 1, Mean_NO + L_NO)).astype(int)
        #mouth
        Mean_MO = np.mean(Landmarks[Map_MO],0)
        L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16))

        Location_MO = np.hstack((Mean_MO - L_MO + 1, Mean_MO + L_MO)).astype(int)
        return Location_LE, Location_RE, Location_NO, Location_MO

    def __len__(self): #
        return len(self.AB_paths)

    def name(self):
        return 'AlignedDataset'