Spaces:
Sleeping
Sleeping
| import unittest | |
| from face_alignment.utils import * | |
| import numpy as np | |
| import torch | |
| class Tester(unittest.TestCase): | |
| def test_flip_is_label(self): | |
| # Generate the points | |
| heatmaps = torch.from_numpy(np.random.randint(1, high=250, size=(68, 64, 64)).astype('float32')) | |
| flipped_heatmaps = flip(flip(heatmaps.clone(), is_label=True), is_label=True) | |
| assert np.allclose(heatmaps.numpy(), flipped_heatmaps.numpy()) | |
| def test_flip_is_image(self): | |
| fake_image = torch.torch.rand(3, 256, 256) | |
| fliped_fake_image = flip(flip(fake_image.clone())) | |
| assert np.allclose(fake_image.numpy(), fliped_fake_image.numpy()) | |
| def test_getpreds(self): | |
| pts = torch.from_numpy(np.random.randint(1, high=63, size=(68, 2)).astype('float32')) | |
| heatmaps = np.zeros((68, 256, 256)) | |
| for i in range(68): | |
| if pts[i, 0] > 0: | |
| heatmaps[i] = draw_gaussian(heatmaps[i], pts[i], 2) | |
| heatmaps = torch.from_numpy(np.expand_dims(heatmaps, axis=0)) | |
| preds, _ = get_preds_fromhm(heatmaps) | |
| assert np.allclose(pts.numpy(), preds.numpy(), atol=5) | |
| if __name__ == '__main__': | |
| unittest.main() | |