Spaces:
Sleeping
Sleeping
| import random | |
| import torch | |
| class ImagePool(): | |
| def __init__(self, pool_size): | |
| self.pool_size = pool_size | |
| if self.pool_size > 0: | |
| self.num_imgs = 0 | |
| self.images = [] | |
| def query(self, images): | |
| if self.pool_size == 0: | |
| return images | |
| return_images = [] | |
| for image in images: | |
| image = torch.unsqueeze(image.data, 0) | |
| if self.num_imgs < self.pool_size: | |
| self.num_imgs = self.num_imgs + 1 | |
| self.images.append(image) | |
| return_images.append(image) | |
| else: | |
| p = random.uniform(0, 1) | |
| if p > 0.5: | |
| random_id = random.randint(0, self.pool_size - 1) # randint is inclusive | |
| tmp = self.images[random_id].clone() | |
| self.images[random_id] = image | |
| return_images.append(tmp) | |
| else: | |
| return_images.append(image) | |
| return_images = torch.cat(return_images, 0) | |
| return return_images | |