Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import os | |
| import ntpath | |
| import time | |
| from . import util | |
| from . import html | |
| # from scipy.misc import imresize | |
| # save image to the disk | |
| def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): | |
| image_dir = webpage.get_image_dir() | |
| if isinstance(image_path,list): | |
| image_path = image_path[0] | |
| short_path = ntpath.basename(image_path) | |
| name = os.path.splitext(short_path)[0] | |
| webpage.add_header(name) | |
| ims, txts, links = [], [], [] | |
| for label, im_data in visuals.items(): | |
| im = util.tensor2im(im_data) | |
| # image_name = '%s_%s.png' % (name, label) | |
| # save_path = os.path.join(image_dir, image_name) | |
| image_name = '%s.png' % (name) | |
| util.mkdirs(os.path.join(image_dir, label)) | |
| save_path = os.path.join(image_dir, label, image_name) | |
| h, w, _ = im.shape | |
| # if aspect_ratio > 1.0: | |
| # im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic') | |
| # if aspect_ratio < 1.0: | |
| # im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic') | |
| util.save_image(im, save_path) | |
| link_name = os.path.join(label,image_name) | |
| ims.append(link_name) | |
| txts.append(label) | |
| links.append(link_name) | |
| webpage.add_images(ims, txts, links, width=width) | |
| def save_crop(visuals, save_path): | |
| im_data = visuals['fake_A'] | |
| im = util.tensor2im(im_data) | |
| util.save_image(im, save_path) | |
| # save image to the disk | |
| def save_images_test(webpage, visuals, image_dir, image_path, aspect_ratio=1.0, width=256): | |
| # image_dir = webpage.get_image_dir() | |
| if isinstance(image_path,list): | |
| image_path = image_path[0] | |
| short_path = ntpath.basename(image_path) | |
| name = os.path.splitext(short_path)[0] | |
| webpage.add_header(name) | |
| ims, txts, links = [], [], [] | |
| for label, im_data in visuals.items(): | |
| im = util.tensor2im(im_data) | |
| # image_name = '%s_%s.png' % (name, label) | |
| # save_path = os.path.join(image_dir, image_name) | |
| image_name = '%s.png' % (name) | |
| util.mkdirs(os.path.join(image_dir, label)) | |
| save_path = os.path.join(image_dir, label, image_name) | |
| exit('wwwwwwwwwwwww') | |
| h, w, _ = im.shape | |
| # if aspect_ratio > 1.0: | |
| # im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic') | |
| # if aspect_ratio < 1.0: | |
| # im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic') | |
| util.save_image(im, save_path) | |
| link_name = os.path.join(label,image_name) | |
| ims.append(link_name) | |
| txts.append(label) | |
| links.append(link_name) | |
| webpage.add_images(ims, txts, links, width=width) | |
| # save image to the disk | |
| # Original Version | |
| # def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): | |
| # image_dir = webpage.get_image_dir() | |
| # short_path = ntpath.basename(image_path[0]) | |
| # name = os.path.splitext(short_path)[0] | |
| # webpage.add_header(name) | |
| # ims, txts, links = [], [], [] | |
| # for label, im_data in visuals.items(): | |
| # im = util.tensor2im(im_data) | |
| # image_name = '%s_%s.png' % (name, label) | |
| # save_path = os.path.join(image_dir, image_name) | |
| # h, w, _ = im.shape | |
| # if aspect_ratio > 1.0: | |
| # im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic') | |
| # if aspect_ratio < 1.0: | |
| # im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic') | |
| # util.save_image(im, save_path) | |
| # ims.append(image_name) | |
| # txts.append(label) | |
| # links.append(image_name) | |
| # webpage.add_images(ims, txts, links, width=width) | |
| class Visualizer(): | |
| def __init__(self, opt): | |
| self.display_id = opt.display_id | |
| self.use_html = opt.isTrain and not opt.no_html | |
| self.win_size = opt.display_winsize | |
| self.name = opt.name | |
| self.opt = opt | |
| self.saved = False | |
| if self.display_id > 0: | |
| import visdom | |
| self.ncols = opt.display_ncols | |
| self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env, raise_exceptions=True) | |
| if self.use_html: | |
| self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') | |
| self.img_dir = os.path.join(self.web_dir, 'images') | |
| print('create web directory %s...' % self.web_dir) | |
| util.mkdirs([self.web_dir, self.img_dir]) | |
| self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') | |
| with open(self.log_name, "a") as log_file: | |
| now = time.strftime("%c") | |
| log_file.write('================ Training Loss (%s) ================\n' % now) | |
| def reset(self): | |
| self.saved = False | |
| def throw_visdom_connection_error(self): | |
| print('\n\nCould not connect to Visdom server (https://github.com/facebookresearch/visdom) for displaying training progress.\nYou can suppress connection to Visdom using the option --display_id -1. To install visdom, run \n$ pip install visdom\n, and start the server by \n$ python -m visdom.server.\n\n') | |
| exit(1) | |
| # |visuals|: dictionary of images to display or save | |
| def display_current_results(self, visuals, epoch, save_result): | |
| if self.display_id > 0: # show images in the browser | |
| ncols = self.ncols | |
| if ncols > 0: | |
| ncols = min(ncols, len(visuals)) | |
| h, w = next(iter(visuals.values())).shape[:2] | |
| table_css = """<style> | |
| table {border-collapse: separate; border-spacing:4px; white-space:nowrap; text-align:center} | |
| table td {width: %dpx; height: %dpx; padding: 4px; outline: 4px solid black} | |
| </style>""" % (w, h) | |
| title = self.name | |
| label_html = '' | |
| label_html_row = '' | |
| images = [] | |
| idx = 0 | |
| for label, image in visuals.items(): | |
| image_numpy = util.tensor2im(image) | |
| label_html_row += '<td>%s</td>' % label | |
| images.append(image_numpy.transpose([2, 0, 1])) | |
| idx += 1 | |
| if idx % ncols == 0: | |
| label_html += '<tr>%s</tr>' % label_html_row | |
| label_html_row = '' | |
| white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 | |
| while idx % ncols != 0: | |
| images.append(white_image) | |
| label_html_row += '<td></td>' | |
| idx += 1 | |
| if label_html_row != '': | |
| label_html += '<tr>%s</tr>' % label_html_row | |
| # pane col = image row | |
| try: | |
| self.vis.images(images, nrow=ncols, win=self.display_id + 1, | |
| padding=2, opts=dict(title=title + ' images')) | |
| label_html = '<table>%s</table>' % label_html | |
| self.vis.text(table_css + label_html, win=self.display_id + 2, | |
| opts=dict(title=title + ' labels')) | |
| except ConnectionError: | |
| self.throw_visdom_connection_error() | |
| else: | |
| idx = 1 | |
| for label, image in visuals.items(): | |
| image_numpy = util.tensor2im(image) | |
| self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label), | |
| win=self.display_id + idx) | |
| idx += 1 | |
| if self.use_html and (save_result or not self.saved): # save images to a html file | |
| self.saved = True | |
| for label, image in visuals.items(): | |
| image_numpy = util.tensor2im(image) | |
| img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) | |
| util.save_image(image_numpy, img_path) | |
| # update website | |
| webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, reflesh=1) | |
| for n in range(epoch, 0, -1): | |
| webpage.add_header('epoch [%d]' % n) | |
| ims, txts, links = [], [], [] | |
| for label, image_numpy in visuals.items(): | |
| image_numpy = util.tensor2im(image) | |
| img_path = 'epoch%.3d_%s.png' % (n, label) | |
| ims.append(img_path) | |
| txts.append(label) | |
| links.append(img_path) | |
| webpage.add_images(ims, txts, links, width=self.win_size) | |
| webpage.save() | |
| # losses: dictionary of error labels and values | |
| def plot_current_losses(self, epoch, counter_ratio, opt, losses): | |
| if not hasattr(self, 'plot_data'): | |
| self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())} | |
| self.plot_data['X'].append(epoch + counter_ratio) | |
| self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']]) | |
| try: | |
| self.vis.line( | |
| X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1), | |
| Y=np.array(self.plot_data['Y']), | |
| opts={ | |
| 'title': self.name + ' loss over time', | |
| 'legend': self.plot_data['legend'], | |
| 'xlabel': 'epoch', | |
| 'ylabel': 'loss'}, | |
| win=self.display_id) | |
| except ConnectionError: | |
| self.throw_visdom_connection_error() | |
| # losses: same format as |losses| of plot_current_losses | |
| def print_current_losses(self, epoch, i, losses, t, t_data): | |
| message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, i, t, t_data) | |
| for k, v in losses.items(): | |
| message += '%s: %.3f ' % (k, v) | |
| print(message) | |
| with open(self.log_name, "a") as log_file: | |
| log_file.write('%s\n' % message) | |