Spaces:
Sleeping
Sleeping
Upload test_FaceDict.py
Browse files- test_FaceDict.py +287 -0
test_FaceDict.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from options.test_options import TestOptions
|
| 3 |
+
from data import CreateDataLoader
|
| 4 |
+
from models import create_model
|
| 5 |
+
from util.visualizer import save_crop
|
| 6 |
+
from util import html
|
| 7 |
+
import numpy as np
|
| 8 |
+
import math
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import torchvision.transforms as transforms
|
| 11 |
+
import torch
|
| 12 |
+
import random
|
| 13 |
+
import cv2
|
| 14 |
+
import dlib
|
| 15 |
+
from skimage import transform as trans
|
| 16 |
+
from skimage import io
|
| 17 |
+
from data.image_folder import make_dataset
|
| 18 |
+
import sys
|
| 19 |
+
sys.path.append('FaceLandmarkDetection')
|
| 20 |
+
import face_alignment
|
| 21 |
+
|
| 22 |
+
###########################################################################
|
| 23 |
+
################# functions of crop and align face images #################
|
| 24 |
+
###########################################################################
|
| 25 |
+
def get_5_points(img):
|
| 26 |
+
dets = detector(img, 1)
|
| 27 |
+
if len(dets) == 0:
|
| 28 |
+
return None
|
| 29 |
+
areas = []
|
| 30 |
+
if len(dets) > 1:
|
| 31 |
+
print('\t###### Warning: more than one face is detected. In this version, we only handle the largest one.')
|
| 32 |
+
for i in range(len(dets)):
|
| 33 |
+
area = (dets[i].rect.right()-dets[i].rect.left())*(dets[i].rect.bottom()-dets[i].rect.top())
|
| 34 |
+
areas.append(area)
|
| 35 |
+
ins = areas.index(max(areas))
|
| 36 |
+
shape = sp(img, dets[ins].rect)
|
| 37 |
+
single_points = []
|
| 38 |
+
for i in range(5):
|
| 39 |
+
single_points.append([shape.part(i).x, shape.part(i).y])
|
| 40 |
+
return np.array(single_points)
|
| 41 |
+
|
| 42 |
+
def align_and_save(img_path, save_path, save_input_path, save_param_path, upsample_scale=2):
|
| 43 |
+
out_size = (512, 512)
|
| 44 |
+
img = dlib.load_rgb_image(img_path)
|
| 45 |
+
h,w,_ = img.shape
|
| 46 |
+
source = get_5_points(img)
|
| 47 |
+
if source is None: #
|
| 48 |
+
print('\t################ No face is detected')
|
| 49 |
+
return
|
| 50 |
+
tform = trans.SimilarityTransform()
|
| 51 |
+
tform.estimate(source, reference)
|
| 52 |
+
M = tform.params[0:2,:]
|
| 53 |
+
crop_img = cv2.warpAffine(img, M, out_size)
|
| 54 |
+
io.imsave(save_path, crop_img) #save the crop and align face
|
| 55 |
+
io.imsave(save_input_path, img) #save the whole input image
|
| 56 |
+
tform2 = trans.SimilarityTransform()
|
| 57 |
+
tform2.estimate(reference, source*upsample_scale)
|
| 58 |
+
# inv_M = cv2.invertAffineTransform(M)
|
| 59 |
+
np.savetxt(save_param_path, tform2.params[0:2,:],fmt='%.3f') #save the inverse affine parameters
|
| 60 |
+
|
| 61 |
+
def reverse_align(input_path, face_path, param_path, save_path, upsample_scale=2):
|
| 62 |
+
out_size = (512, 512)
|
| 63 |
+
input_img = dlib.load_rgb_image(input_path)
|
| 64 |
+
h,w,_ = input_img.shape
|
| 65 |
+
face512 = dlib.load_rgb_image(face_path)
|
| 66 |
+
inv_M = np.loadtxt(param_path)
|
| 67 |
+
inv_crop_img = cv2.warpAffine(face512, inv_M, (w*upsample_scale,h*upsample_scale))
|
| 68 |
+
mask = np.ones((512, 512, 3), dtype=np.float32) #* 255
|
| 69 |
+
inv_mask = cv2.warpAffine(mask, inv_M, (w*upsample_scale,h*upsample_scale))
|
| 70 |
+
upsample_img = cv2.resize(input_img, (w*upsample_scale, h*upsample_scale))
|
| 71 |
+
inv_mask_erosion_removeborder = cv2.erode(inv_mask, np.ones((2 * upsample_scale, 2 * upsample_scale), np.uint8))# to remove the black border
|
| 72 |
+
inv_crop_img_removeborder = inv_mask_erosion_removeborder * inv_crop_img
|
| 73 |
+
total_face_area = np.sum(inv_mask_erosion_removeborder)//3
|
| 74 |
+
w_edge = int(total_face_area ** 0.5) // 20 #compute the fusion edge based on the area of face
|
| 75 |
+
erosion_radius = w_edge * 2
|
| 76 |
+
inv_mask_center = cv2.erode(inv_mask_erosion_removeborder, np.ones((erosion_radius, erosion_radius), np.uint8))
|
| 77 |
+
blur_size = w_edge * 2
|
| 78 |
+
inv_soft_mask = cv2.GaussianBlur(inv_mask_center,(blur_size + 1, blur_size + 1),0)
|
| 79 |
+
merge_img = inv_soft_mask * inv_crop_img_removeborder + (1 - inv_soft_mask) * upsample_img
|
| 80 |
+
io.imsave(save_path, merge_img.astype(np.uint8))
|
| 81 |
+
|
| 82 |
+
###########################################################################
|
| 83 |
+
################ functions of preparing the test images ###################
|
| 84 |
+
###########################################################################
|
| 85 |
+
def AddUpSample(img):
|
| 86 |
+
return img.resize((512, 512), Image.BICUBIC)
|
| 87 |
+
def get_part_location(partpath, imgname):
|
| 88 |
+
Landmarks = []
|
| 89 |
+
if not os.path.exists(os.path.join(partpath,imgname+'.txt')):
|
| 90 |
+
print(os.path.join(partpath,imgname+'.txt'))
|
| 91 |
+
print('\t################ No landmark file')
|
| 92 |
+
return 0
|
| 93 |
+
with open(os.path.join(partpath,imgname+'.txt'),'r') as f:
|
| 94 |
+
for line in f:
|
| 95 |
+
tmp = [np.float(i) for i in line.split(' ') if i != '\n']
|
| 96 |
+
Landmarks.append(tmp)
|
| 97 |
+
Landmarks = np.array(Landmarks)
|
| 98 |
+
Map_LE = list(np.hstack((range(17,22), range(36,42))))
|
| 99 |
+
Map_RE = list(np.hstack((range(22,27), range(42,48))))
|
| 100 |
+
Map_NO = list(range(29,36))
|
| 101 |
+
Map_MO = list(range(48,68))
|
| 102 |
+
try:
|
| 103 |
+
#left eye
|
| 104 |
+
Mean_LE = np.mean(Landmarks[Map_LE],0)
|
| 105 |
+
L_LE = np.max((np.max(np.max(Landmarks[Map_LE],0) - np.min(Landmarks[Map_LE],0))/2,16))
|
| 106 |
+
Location_LE = np.hstack((Mean_LE - L_LE + 1, Mean_LE + L_LE)).astype(int)
|
| 107 |
+
#right eye
|
| 108 |
+
Mean_RE = np.mean(Landmarks[Map_RE],0)
|
| 109 |
+
L_RE = np.max((np.max(np.max(Landmarks[Map_RE],0) - np.min(Landmarks[Map_RE],0))/2,16))
|
| 110 |
+
Location_RE = np.hstack((Mean_RE - L_RE + 1, Mean_RE + L_RE)).astype(int)
|
| 111 |
+
#nose
|
| 112 |
+
Mean_NO = np.mean(Landmarks[Map_NO],0)
|
| 113 |
+
L_NO = np.max((np.max(np.max(Landmarks[Map_NO],0) - np.min(Landmarks[Map_NO],0))/2,16))
|
| 114 |
+
Location_NO = np.hstack((Mean_NO - L_NO + 1, Mean_NO + L_NO)).astype(int)
|
| 115 |
+
#mouth
|
| 116 |
+
Mean_MO = np.mean(Landmarks[Map_MO],0)
|
| 117 |
+
L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16))
|
| 118 |
+
Location_MO = np.hstack((Mean_MO - L_MO + 1, Mean_MO + L_MO)).astype(int)
|
| 119 |
+
except:
|
| 120 |
+
return 0
|
| 121 |
+
return torch.from_numpy(Location_LE).unsqueeze(0), torch.from_numpy(Location_RE).unsqueeze(0), torch.from_numpy(Location_NO).unsqueeze(0), torch.from_numpy(Location_MO).unsqueeze(0)
|
| 122 |
+
|
| 123 |
+
def obtain_inputs(img_path, Landmark_path, img_name):
|
| 124 |
+
A_paths = os.path.join(img_path,img_name)
|
| 125 |
+
A = Image.open(A_paths).convert('RGB')
|
| 126 |
+
Part_locations = get_part_location(Landmark_path, img_name)
|
| 127 |
+
if Part_locations == 0:
|
| 128 |
+
return 0
|
| 129 |
+
C = A
|
| 130 |
+
A = AddUpSample(A)
|
| 131 |
+
A = transforms.ToTensor()(A)
|
| 132 |
+
C = transforms.ToTensor()(C)
|
| 133 |
+
A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A) #
|
| 134 |
+
C = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(C) #
|
| 135 |
+
return {'A':A.unsqueeze(0), 'C':C.unsqueeze(0), 'A_paths': A_paths,'Part_locations': Part_locations}
|
| 136 |
+
|
| 137 |
+
if __name__ == '__main__':
|
| 138 |
+
opt = TestOptions().parse()
|
| 139 |
+
opt.nThreads = 1 # test code only supports nThreads = 1
|
| 140 |
+
opt.batchSize = 1 # test code only supports batchSize = 1
|
| 141 |
+
opt.serial_batches = True # no shuffle
|
| 142 |
+
opt.no_flip = True # no flip
|
| 143 |
+
opt.display_id = -1 # no visdom display
|
| 144 |
+
opt.which_epoch = 'latest' #
|
| 145 |
+
|
| 146 |
+
#######################################################################
|
| 147 |
+
########################### Test Param ################################
|
| 148 |
+
#######################################################################
|
| 149 |
+
# opt.gpu_ids = [0] # gpu id. if use cpu, set opt.gpu_ids = []
|
| 150 |
+
# TestImgPath = './TestData/TestWhole' # test image path
|
| 151 |
+
# ResultsDir = './Results/TestWholeResults' #save path
|
| 152 |
+
# UpScaleWhole = 4 # the upsamle scale. It should be noted that our face results are fixed to 512.
|
| 153 |
+
TestImgPath = opt.test_path
|
| 154 |
+
ResultsDir = opt.results_dir
|
| 155 |
+
UpScaleWhole = opt.upscale_factor
|
| 156 |
+
|
| 157 |
+
print('\n###################### Now Running the X {} task ##############################'.format(UpScaleWhole))
|
| 158 |
+
|
| 159 |
+
#######################################################################
|
| 160 |
+
###########Step 1: Crop and Align Face from the whole Image ###########
|
| 161 |
+
#######################################################################
|
| 162 |
+
print('\n###############################################################################')
|
| 163 |
+
print('####################### Step 1: Crop and Align Face ###########################')
|
| 164 |
+
print('###############################################################################\n')
|
| 165 |
+
|
| 166 |
+
detector = dlib.cnn_face_detection_model_v1('./packages/mmod_human_face_detector.dat')
|
| 167 |
+
sp = dlib.shape_predictor('./packages/shape_predictor_5_face_landmarks.dat')
|
| 168 |
+
reference = np.load('./packages/FFHQ_template.npy') / 2
|
| 169 |
+
SaveInputPath = os.path.join(ResultsDir,'Step0_Input')
|
| 170 |
+
if not os.path.exists(SaveInputPath):
|
| 171 |
+
os.makedirs(SaveInputPath)
|
| 172 |
+
SaveCropPath = os.path.join(ResultsDir,'Step1_CropImg')
|
| 173 |
+
if not os.path.exists(SaveCropPath):
|
| 174 |
+
os.makedirs(SaveCropPath)
|
| 175 |
+
|
| 176 |
+
SaveParamPath = os.path.join(ResultsDir,'Step1_AffineParam') #save the inverse affine parameters
|
| 177 |
+
if not os.path.exists(SaveParamPath):
|
| 178 |
+
os.makedirs(SaveParamPath)
|
| 179 |
+
|
| 180 |
+
ImgPaths = make_dataset(TestImgPath)
|
| 181 |
+
for i, ImgPath in enumerate(ImgPaths):
|
| 182 |
+
ImgName = os.path.split(ImgPath)[-1]
|
| 183 |
+
print('Crop and Align {} image'.format(ImgName))
|
| 184 |
+
SavePath = os.path.join(SaveCropPath,ImgName)
|
| 185 |
+
SaveInput = os.path.join(SaveInputPath,ImgName)
|
| 186 |
+
SaveParam = os.path.join(SaveParamPath, ImgName+'.npy')
|
| 187 |
+
align_and_save(ImgPath, SavePath, SaveInput, SaveParam, UpScaleWhole)
|
| 188 |
+
|
| 189 |
+
#######################################################################
|
| 190 |
+
####### Step 2: Face Landmark Detection from the Cropped Image ########
|
| 191 |
+
#######################################################################
|
| 192 |
+
print('\n###############################################################################')
|
| 193 |
+
print('####################### Step 2: Face Landmark Detection #######################')
|
| 194 |
+
print('###############################################################################\n')
|
| 195 |
+
|
| 196 |
+
SaveLandmarkPath = os.path.join(ResultsDir,'Step2_Landmarks')
|
| 197 |
+
if len(opt.gpu_ids) > 0:
|
| 198 |
+
dev = 'cuda:{}'.format(opt.gpu_ids[0])
|
| 199 |
+
else:
|
| 200 |
+
dev = 'cpu'
|
| 201 |
+
FD = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D,device=dev, flip_input=False)
|
| 202 |
+
if not os.path.exists(SaveLandmarkPath):
|
| 203 |
+
os.makedirs(SaveLandmarkPath)
|
| 204 |
+
ImgPaths = make_dataset(SaveCropPath)
|
| 205 |
+
for i,ImgPath in enumerate(ImgPaths):
|
| 206 |
+
ImgName = os.path.split(ImgPath)[-1]
|
| 207 |
+
print('Detecting {}'.format(ImgName))
|
| 208 |
+
Img = io.imread(ImgPath)
|
| 209 |
+
try:
|
| 210 |
+
PredsAll = FD.get_landmarks(Img)
|
| 211 |
+
except:
|
| 212 |
+
print('\t################ Error in face detection, continue...')
|
| 213 |
+
continue
|
| 214 |
+
if PredsAll is None:
|
| 215 |
+
print('\t################ No face, continue...')
|
| 216 |
+
continue
|
| 217 |
+
ins = 0
|
| 218 |
+
if len(PredsAll)!=1:
|
| 219 |
+
hights = []
|
| 220 |
+
for l in PredsAll:
|
| 221 |
+
hights.append(l[8,1] - l[19,1])
|
| 222 |
+
ins = hights.index(max(hights))
|
| 223 |
+
# print('\t################ Warning: Detected too many face, only handle the largest one...')
|
| 224 |
+
# continue
|
| 225 |
+
preds = PredsAll[ins]
|
| 226 |
+
AddLength = np.sqrt(np.sum(np.power(preds[27][0:2]-preds[33][0:2],2)))
|
| 227 |
+
SaveName = ImgName+'.txt'
|
| 228 |
+
np.savetxt(os.path.join(SaveLandmarkPath,SaveName),preds[:,0:2],fmt='%.3f')
|
| 229 |
+
|
| 230 |
+
#######################################################################
|
| 231 |
+
####################### Step 3: Face Restoration ######################
|
| 232 |
+
#######################################################################
|
| 233 |
+
|
| 234 |
+
print('\n###############################################################################')
|
| 235 |
+
print('####################### Step 3: Face Restoration ##############################')
|
| 236 |
+
print('###############################################################################\n')
|
| 237 |
+
|
| 238 |
+
SaveRestorePath = os.path.join(ResultsDir,'Step3_RestoreCropFace')# Only Face Results
|
| 239 |
+
if not os.path.exists(SaveRestorePath):
|
| 240 |
+
os.makedirs(SaveRestorePath)
|
| 241 |
+
model = create_model(opt)
|
| 242 |
+
model.setup(opt)
|
| 243 |
+
# test
|
| 244 |
+
ImgPaths = make_dataset(SaveCropPath)
|
| 245 |
+
total = 0
|
| 246 |
+
for i, ImgPath in enumerate(ImgPaths):
|
| 247 |
+
ImgName = os.path.split(ImgPath)[-1]
|
| 248 |
+
print('Restoring {}'.format(ImgName))
|
| 249 |
+
torch.cuda.empty_cache()
|
| 250 |
+
data = obtain_inputs(SaveCropPath, SaveLandmarkPath, ImgName)
|
| 251 |
+
if data == 0:
|
| 252 |
+
print('\t################ Error in landmark file, continue...')
|
| 253 |
+
continue #
|
| 254 |
+
total = total + 1
|
| 255 |
+
model.set_input(data)
|
| 256 |
+
try:
|
| 257 |
+
model.test()
|
| 258 |
+
visuals = model.get_current_visuals()
|
| 259 |
+
save_crop(visuals,os.path.join(SaveRestorePath,ImgName))
|
| 260 |
+
except Exception as e:
|
| 261 |
+
print('\t################ Error in enhancing this image: {}'.format(str(e)))
|
| 262 |
+
print('\t################ continue...')
|
| 263 |
+
continue
|
| 264 |
+
|
| 265 |
+
#######################################################################
|
| 266 |
+
############ Step 4: Paste the Results to the Input Image #############
|
| 267 |
+
#######################################################################
|
| 268 |
+
|
| 269 |
+
print('\n###############################################################################')
|
| 270 |
+
print('############### Step 4: Paste the Restored Face to the Input Image ############')
|
| 271 |
+
print('###############################################################################\n')
|
| 272 |
+
|
| 273 |
+
SaveFianlPath = os.path.join(ResultsDir,'Step4_FinalResults')
|
| 274 |
+
if not os.path.exists(SaveFianlPath):
|
| 275 |
+
os.makedirs(SaveFianlPath)
|
| 276 |
+
ImgPaths = make_dataset(SaveRestorePath)
|
| 277 |
+
for i,ImgPath in enumerate(ImgPaths):
|
| 278 |
+
ImgName = os.path.split(ImgPath)[-1]
|
| 279 |
+
print('Final Restoring {}'.format(ImgName))
|
| 280 |
+
WholeInputPath = os.path.join(TestImgPath,ImgName)
|
| 281 |
+
FaceResultPath = os.path.join(SaveRestorePath, ImgName)
|
| 282 |
+
ParamPath = os.path.join(SaveParamPath, ImgName+'.npy')
|
| 283 |
+
SaveWholePath = os.path.join(SaveFianlPath, ImgName)
|
| 284 |
+
reverse_align(WholeInputPath, FaceResultPath, ParamPath, SaveWholePath, UpScaleWhole)
|
| 285 |
+
|
| 286 |
+
print('\nAll results are saved in {} \n'.format(ResultsDir))
|
| 287 |
+
|