# -- coding: utf-8 -- from __future__ import print_function import torch import numpy as np from PIL import Image import os import torchvision # Converts a Tensor into an image array (numpy) # |imtype|: the desired type of the converted numpy array def tensor2im(input_image, norm=1, imtype=np.uint8): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data else: return input_image if norm == 1: #for clamp -1 to 1 image_numpy = image_tensor[0].cpu().float().clamp_(-1,1).numpy() elif norm == 2: # for norm through max-min image_ = image_tensor[0].cpu().float() max_ = torch.max(image_) min_ = torch.min(image_) image_numpy = (image_ - min_)/(max_-min_)*2-1 image_numpy = image_numpy.numpy() else: pass if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) # print(image_numpy.shape) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # print(image_numpy.shape) return image_numpy.astype(imtype) def tensor2im3Channels(input_image, imtype=np.uint8): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data else: return input_image image_numpy = image_tensor.cpu().float().clamp_(-1,1).numpy() # print(image_numpy.shape) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # print(image_numpy.shape) return image_numpy.astype(imtype) def diagnose_network(net, name='network'): mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def print_numpy(x, val=True, shp=False): x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def print_current_losses(epoch, i, losses, t, t_data): message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, i, t, t_data) for k, v in losses.items(): message += '%s: %.3f ' % (k, v) print(message) # with open('', "a") as log_file: # log_file.write('%s\n' % message) def display_current_results(writer,visuals,losses,step,save_result): for label, images in visuals.items(): if 'Mask' in label:# or 'Scale' in label: grid = torchvision.utils.make_grid(images,normalize=False, scale_each=True) # pass else: pass grid = torchvision.utils.make_grid(images,normalize=True, scale_each=True) writer.add_image(label,grid,step) for k,v in losses.items(): writer.add_scalar(k,v,step) def VisualFeature(input_feature, imtype=np.uint8): if isinstance(input_feature, torch.Tensor): image_tensor = input_feature.data else: return input_feature image_ = image_tensor.cpu().float() if image_.size(1) == 3: image_ = image_.permute(1,2,0) # assert(image_.size(1) == 1) #####norm 0 to 1 max_ = torch.max(image_) min_ = torch.min(image_) image_numpy = (image_ - min_)/(max_-min_)*2-1 image_numpy = image_numpy.numpy() image_numpy = (image_numpy + 1) / 2.0 * 255.0 #####no norm # print((max_,min_)) # image_numpy = image_.numpy() # image_numpy = image_numpy*255.0 # print('wwwwwwwwwwwwww') # print(max_) # print(min_) # print(image_numpy.shape) return image_numpy.astype(imtype) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path)