import os import cv2 import dlib try: import urllib.request as request_file except BaseException: import urllib as request_file from ..core import FaceDetector from ...utils import appdata_dir class DlibDetector(FaceDetector): def __init__(self, device, path_to_detector=None, verbose=False): super().__init__(device, verbose) print('Warning: this detector is deprecated. Please use a different one, i.e.: S3FD.') base_path = os.path.join(appdata_dir('face_alignment'), "data") # Initialise the face detector if 'cuda' in device: if path_to_detector is None: path_to_detector = os.path.join( base_path, "mmod_human_face_detector.dat") if not os.path.isfile(path_to_detector): print("Downloading the face detection CNN. Please wait...") path_to_temp_detector = os.path.join( base_path, "mmod_human_face_detector.dat.download") if os.path.isfile(path_to_temp_detector): os.remove(os.path.join(path_to_temp_detector)) request_file.urlretrieve( "https://www.adrianbulat.com/downloads/dlib/mmod_human_face_detector.dat", os.path.join(path_to_temp_detector)) os.rename(os.path.join(path_to_temp_detector), os.path.join(path_to_detector)) self.face_detector = dlib.cnn_face_detection_model_v1(path_to_detector) else: self.face_detector = dlib.get_frontal_face_detector() def detect_from_image(self, tensor_or_path): image = self.tensor_or_path_to_ndarray(tensor_or_path, rgb=False) detected_faces = self.face_detector(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) if 'cuda' not in self.device: detected_faces = [[d.left(), d.top(), d.right(), d.bottom()] for d in detected_faces] else: detected_faces = [[d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom()] for d in detected_faces] return detected_faces @property def reference_scale(self): return 195 @property def reference_x_shift(self): return 0 @property def reference_y_shift(self): return 0