import argparse import os from util import util import torch import models import data class BaseOptions(): def __init__(self): self.initialized = False def initialize(self, parser): parser.add_argument('--batchSize', type=int, default=2, help='input batch size') parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer') parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') parser.add_argument('--name', type=str, default='facefh_dictionary', help='name of the experiment. It decides where to store samples and models') parser.add_argument('--model', type=str, default='faceDict', help='chooses which model to use. cycle_gan, pix2pix, test') parser.add_argument('--which_direction', type=str, default='BtoA', help='AtoB or BtoA') parser.add_argument('--nThreads', default=8, type=int, help='# threads for loading data') parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization') parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') parser.add_argument('--resize_or_crop', type=str, default='degradation', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]') parser.add_argument('--init_type', type=str, default='kaiming', help='network initialization [normal|xavier|kaiming|orthogonal]') parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{which_model_netG}_size{loadSize}') self.initialized = True return parser def gather_options(self): # initialize parser with basic options if not self.initialized: parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = self.initialize(parser) # get the basic options opt, _ = parser.parse_known_args() # modify model-related parser options model_name = opt.model model_option_setter = models.get_option_setter(model_name) parser = model_option_setter(parser, self.isTrain) opt, _ = parser.parse_known_args() # parse again with the new defaults # modify dataset-related parser options dataset_name = opt.dataset_mode dataset_option_setter = data.get_option_setter(dataset_name) parser = dataset_option_setter(parser, self.isTrain) self.parser = parser return parser.parse_args() def print_options(self, opt): message = '' message += '----------------- Options ---------------\n' for k, v in sorted(vars(opt).items()): comment = '' default = self.parser.get_default(k) if v != default: comment = '\t[default: %s]' % str(default) message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) message += '----------------- End -------------------' print(message) # save to the disk expr_dir = os.path.join(opt.checkpoints_dir, opt.name) util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write(message) opt_file.write('\n') def parse(self): opt = self.gather_options() opt.isTrain = self.isTrain # train or test # process opt.suffix if opt.suffix: suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' opt.name = opt.name + suffix # self.print_options(opt) # set gpu ids str_ids = opt.gpu_ids.split(',') opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: opt.gpu_ids.append(id) if len(opt.gpu_ids) > 0: torch.cuda.set_device(opt.gpu_ids[0]) self.opt = opt return self.opt