Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import torch | |
| from threading import Thread | |
| # Load model and tokenizer | |
| model_name = "GoofyLM/gonzalez-v1" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", | |
| torch_dtype=torch.float16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Set pad token if missing | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # Define a custom chat template if one is not available | |
| if tokenizer.chat_template is None: | |
| # Basic ChatML-style template | |
| tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'system' %}<|system|>\n{{ message['content'] }}\n{% elif message['role'] == 'user' %}<|user|>\n{{ message['content'] }}\n{% elif message['role'] == 'assistant' %}<|assistant|>\n{{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}<|assistant|>\n{% endif %}" | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Build conversation messages | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_msg, assistant_msg in history: | |
| if user_msg: | |
| messages.append({"role": "user", "content": user_msg}) | |
| if assistant_msg: | |
| messages.append({"role": "assistant", "content": assistant_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Format prompt using chat template | |
| prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| # Set up streaming | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| # Configure generation parameters | |
| do_sample = temperature > 0 or top_p < 1.0 | |
| generation_kwargs = dict( | |
| **inputs, | |
| streamer=streamer, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=do_sample, | |
| pad_token_id=tokenizer.pad_token_id | |
| ) | |
| # Start generation in separate thread | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| # Stream response | |
| response = "" | |
| for token in streamer: | |
| response += token | |
| yield response | |
| # Create Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| gr.Slider(1, 215, value=72, label="Max new tokens"), | |
| gr.Slider(0.1, 4.0, value=0.7, label="Temperature"), | |
| gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo. launch() |