Spaces:
Runtime error
Runtime error
| #api for 240604 release version by Xiaokai | |
| import os | |
| import sys | |
| import json | |
| import re | |
| import time | |
| import librosa | |
| import torch | |
| import numpy as np | |
| import torch.nn.functional as F | |
| import torchaudio.transforms as tat | |
| import sounddevice as sd | |
| from dotenv import load_dotenv | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| import threading | |
| import uvicorn | |
| import logging | |
| from multiprocessing import Queue, Process, cpu_count, freeze_support | |
| # Initialize the logger | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Define FastAPI app | |
| app = FastAPI() | |
| class GUIConfig: | |
| def __init__(self) -> None: | |
| self.pth_path: str = "" | |
| self.index_path: str = "" | |
| self.pitch: int = 0 | |
| self.formant: float = 0.0 | |
| self.sr_type: str = "sr_model" | |
| self.block_time: float = 0.25 # s | |
| self.threhold: int = -60 | |
| self.crossfade_time: float = 0.05 | |
| self.extra_time: float = 2.5 | |
| self.I_noise_reduce: bool = False | |
| self.O_noise_reduce: bool = False | |
| self.use_pv: bool = False | |
| self.rms_mix_rate: float = 0.0 | |
| self.index_rate: float = 0.0 | |
| self.n_cpu: int = 4 | |
| self.f0method: str = "fcpe" | |
| self.sg_input_device: str = "" | |
| self.sg_output_device: str = "" | |
| class ConfigData(BaseModel): | |
| pth_path: str | |
| index_path: str | |
| sg_input_device: str | |
| sg_output_device: str | |
| threhold: int = -60 | |
| pitch: int = 0 | |
| formant: float = 0.0 | |
| index_rate: float = 0.3 | |
| rms_mix_rate: float = 0.0 | |
| block_time: float = 0.25 | |
| crossfade_length: float = 0.05 | |
| extra_time: float = 2.5 | |
| n_cpu: int = 4 | |
| I_noise_reduce: bool = False | |
| O_noise_reduce: bool = False | |
| use_pv: bool = False | |
| f0method: str = "fcpe" | |
| class Harvest(Process): | |
| def __init__(self, inp_q, opt_q): | |
| super(Harvest, self).__init__() | |
| self.inp_q = inp_q | |
| self.opt_q = opt_q | |
| def run(self): | |
| import numpy as np | |
| import pyworld | |
| while True: | |
| idx, x, res_f0, n_cpu, ts = self.inp_q.get() | |
| f0, t = pyworld.harvest( | |
| x.astype(np.double), | |
| fs=16000, | |
| f0_ceil=1100, | |
| f0_floor=50, | |
| frame_period=10, | |
| ) | |
| res_f0[idx] = f0 | |
| if len(res_f0.keys()) >= n_cpu: | |
| self.opt_q.put(ts) | |
| class AudioAPI: | |
| def __init__(self) -> None: | |
| self.gui_config = GUIConfig() | |
| self.config = None # Initialize Config object as None | |
| self.flag_vc = False | |
| self.function = "vc" | |
| self.delay_time = 0 | |
| self.rvc = None # Initialize RVC object as None | |
| self.inp_q = None | |
| self.opt_q = None | |
| self.n_cpu = min(cpu_count(), 8) | |
| def initialize_queues(self): | |
| self.inp_q = Queue() | |
| self.opt_q = Queue() | |
| for _ in range(self.n_cpu): | |
| p = Harvest(self.inp_q, self.opt_q) | |
| p.daemon = True | |
| p.start() | |
| def load(self): | |
| input_devices, output_devices, _, _ = self.get_devices() | |
| try: | |
| with open("configs/config.json", "r", encoding='utf-8') as j: | |
| data = json.load(j) | |
| if data["sg_input_device"] not in input_devices: | |
| data["sg_input_device"] = input_devices[sd.default.device[0]] | |
| if data["sg_output_device"] not in output_devices: | |
| data["sg_output_device"] = output_devices[sd.default.device[1]] | |
| except Exception as e: | |
| logger.error(f"Failed to load configuration: {e}") | |
| with open("configs/config.json", "w", encoding='utf-8') as j: | |
| data = { | |
| "pth_path": "", | |
| "index_path": "", | |
| "sg_input_device": input_devices[sd.default.device[0]], | |
| "sg_output_device": output_devices[sd.default.device[1]], | |
| "threhold": -60, | |
| "pitch": 0, | |
| "formant": 0.0, | |
| "index_rate": 0, | |
| "rms_mix_rate": 0, | |
| "block_time": 0.25, | |
| "crossfade_length": 0.05, | |
| "extra_time": 2.5, | |
| "n_cpu": 4, | |
| "f0method": "fcpe", | |
| "use_jit": False, | |
| "use_pv": False, | |
| } | |
| json.dump(data, j, ensure_ascii=False) | |
| return data | |
| def set_values(self, values): | |
| logger.info(f"Setting values: {values}") | |
| if not values.pth_path.strip(): | |
| raise HTTPException(status_code=400, detail="Please select a .pth file") | |
| if not values.index_path.strip(): | |
| raise HTTPException(status_code=400, detail="Please select an index file") | |
| self.set_devices(values.sg_input_device, values.sg_output_device) | |
| self.config.use_jit = False | |
| self.gui_config.pth_path = values.pth_path | |
| self.gui_config.index_path = values.index_path | |
| self.gui_config.threhold = values.threhold | |
| self.gui_config.pitch = values.pitch | |
| self.gui_config.formant = values.formant | |
| self.gui_config.block_time = values.block_time | |
| self.gui_config.crossfade_time = values.crossfade_length | |
| self.gui_config.extra_time = values.extra_time | |
| self.gui_config.I_noise_reduce = values.I_noise_reduce | |
| self.gui_config.O_noise_reduce = values.O_noise_reduce | |
| self.gui_config.rms_mix_rate = values.rms_mix_rate | |
| self.gui_config.index_rate = values.index_rate | |
| self.gui_config.n_cpu = values.n_cpu | |
| self.gui_config.use_pv = values.use_pv | |
| self.gui_config.f0method = values.f0method | |
| return True | |
| def start_vc(self): | |
| torch.cuda.empty_cache() | |
| self.flag_vc = True | |
| self.rvc = rvc_for_realtime.RVC( | |
| self.gui_config.pitch, | |
| self.gui_config.pth_path, | |
| self.gui_config.index_path, | |
| self.gui_config.index_rate, | |
| self.gui_config.n_cpu, | |
| self.inp_q, | |
| self.opt_q, | |
| self.config, | |
| self.rvc if self.rvc else None, | |
| ) | |
| self.gui_config.samplerate = ( | |
| self.rvc.tgt_sr | |
| if self.gui_config.sr_type == "sr_model" | |
| else self.get_device_samplerate() | |
| ) | |
| self.zc = self.gui_config.samplerate // 100 | |
| self.block_frame = ( | |
| int( | |
| np.round( | |
| self.gui_config.block_time | |
| * self.gui_config.samplerate | |
| / self.zc | |
| ) | |
| ) | |
| * self.zc | |
| ) | |
| self.block_frame_16k = 160 * self.block_frame // self.zc | |
| self.crossfade_frame = ( | |
| int( | |
| np.round( | |
| self.gui_config.crossfade_time | |
| * self.gui_config.samplerate | |
| / self.zc | |
| ) | |
| ) | |
| * self.zc | |
| ) | |
| self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc) | |
| self.sola_search_frame = self.zc | |
| self.extra_frame = ( | |
| int( | |
| np.round( | |
| self.gui_config.extra_time | |
| * self.gui_config.samplerate | |
| / self.zc | |
| ) | |
| ) | |
| * self.zc | |
| ) | |
| self.input_wav = torch.zeros( | |
| self.extra_frame | |
| + self.crossfade_frame | |
| + self.sola_search_frame | |
| + self.block_frame, | |
| device=self.config.device, | |
| dtype=torch.float32, | |
| ) | |
| self.input_wav_denoise = self.input_wav.clone() | |
| self.input_wav_res = torch.zeros( | |
| 160 * self.input_wav.shape[0] // self.zc, | |
| device=self.config.device, | |
| dtype=torch.float32, | |
| ) | |
| self.rms_buffer = np.zeros(4 * self.zc, dtype="float32") | |
| self.sola_buffer = torch.zeros( | |
| self.sola_buffer_frame, device=self.config.device, dtype=torch.float32 | |
| ) | |
| self.nr_buffer = self.sola_buffer.clone() | |
| self.output_buffer = self.input_wav.clone() | |
| self.skip_head = self.extra_frame // self.zc | |
| self.return_length = ( | |
| self.block_frame + self.sola_buffer_frame + self.sola_search_frame | |
| ) // self.zc | |
| self.fade_in_window = ( | |
| torch.sin( | |
| 0.5 | |
| * np.pi | |
| * torch.linspace( | |
| 0.0, | |
| 1.0, | |
| steps=self.sola_buffer_frame, | |
| device=self.config.device, | |
| dtype=torch.float32, | |
| ) | |
| ) | |
| ** 2 | |
| ) | |
| self.fade_out_window = 1 - self.fade_in_window | |
| self.resampler = tat.Resample( | |
| orig_freq=self.gui_config.samplerate, | |
| new_freq=16000, | |
| dtype=torch.float32, | |
| ).to(self.config.device) | |
| if self.rvc.tgt_sr != self.gui_config.samplerate: | |
| self.resampler2 = tat.Resample( | |
| orig_freq=self.rvc.tgt_sr, | |
| new_freq=self.gui_config.samplerate, | |
| dtype=torch.float32, | |
| ).to(self.config.device) | |
| else: | |
| self.resampler2 = None | |
| self.tg = TorchGate( | |
| sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9 | |
| ).to(self.config.device) | |
| thread_vc = threading.Thread(target=self.soundinput) | |
| thread_vc.start() | |
| def soundinput(self): | |
| channels = 1 if sys.platform == "darwin" else 2 | |
| with sd.Stream( | |
| channels=channels, | |
| callback=self.audio_callback, | |
| blocksize=self.block_frame, | |
| samplerate=self.gui_config.samplerate, | |
| dtype="float32", | |
| ) as stream: | |
| global stream_latency | |
| stream_latency = stream.latency[-1] | |
| while self.flag_vc: | |
| time.sleep(self.gui_config.block_time) | |
| logger.info("Audio block passed.") | |
| logger.info("Ending VC") | |
| def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status): | |
| start_time = time.perf_counter() | |
| indata = librosa.to_mono(indata.T) | |
| if self.gui_config.threhold > -60: | |
| indata = np.append(self.rms_buffer, indata) | |
| rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)[:, 2:] | |
| self.rms_buffer[:] = indata[-4 * self.zc :] | |
| indata = indata[2 * self.zc - self.zc // 2 :] | |
| db_threhold = ( | |
| librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold | |
| ) | |
| for i in range(db_threhold.shape[0]): | |
| if db_threhold[i]: | |
| indata[i * self.zc : (i + 1) * self.zc] = 0 | |
| indata = indata[self.zc // 2 :] | |
| self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone() | |
| self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to(self.config.device) | |
| self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone() | |
| # input noise reduction and resampling | |
| if self.gui_config.I_noise_reduce: | |
| self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[self.block_frame :].clone() | |
| input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :] | |
| input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)).squeeze(0) | |
| input_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
| input_wav[: self.sola_buffer_frame] += self.nr_buffer * self.fade_out_window | |
| self.input_wav_denoise[-self.block_frame :] = input_wav[: self.block_frame] | |
| self.nr_buffer[:] = input_wav[self.block_frame :] | |
| self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler( | |
| self.input_wav_denoise[-self.block_frame - 2 * self.zc :] | |
| )[160:] | |
| else: | |
| self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = ( | |
| self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[160:] | |
| ) | |
| # infer | |
| if self.function == "vc": | |
| infer_wav = self.rvc.infer( | |
| self.input_wav_res, | |
| self.block_frame_16k, | |
| self.skip_head, | |
| self.return_length, | |
| self.gui_config.f0method, | |
| ) | |
| if self.resampler2 is not None: | |
| infer_wav = self.resampler2(infer_wav) | |
| elif self.gui_config.I_noise_reduce: | |
| infer_wav = self.input_wav_denoise[self.extra_frame :].clone() | |
| else: | |
| infer_wav = self.input_wav[self.extra_frame :].clone() | |
| # output noise reduction | |
| if self.gui_config.O_noise_reduce and self.function == "vc": | |
| self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone() | |
| self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :] | |
| infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0) | |
| # volume envelop mixing | |
| if self.gui_config.rms_mix_rate < 1 and self.function == "vc": | |
| if self.gui_config.I_noise_reduce: | |
| input_wav = self.input_wav_denoise[self.extra_frame :] | |
| else: | |
| input_wav = self.input_wav[self.extra_frame :] | |
| rms1 = librosa.feature.rms( | |
| y=input_wav[: infer_wav.shape[0]].cpu().numpy(), | |
| frame_length=4 * self.zc, | |
| hop_length=self.zc, | |
| ) | |
| rms1 = torch.from_numpy(rms1).to(self.config.device) | |
| rms1 = F.interpolate( | |
| rms1.unsqueeze(0), | |
| size=infer_wav.shape[0] + 1, | |
| mode="linear", | |
| align_corners=True, | |
| )[0, 0, :-1] | |
| rms2 = librosa.feature.rms( | |
| y=infer_wav[:].cpu().numpy(), | |
| frame_length=4 * self.zc, | |
| hop_length=self.zc, | |
| ) | |
| rms2 = torch.from_numpy(rms2).to(self.config.device) | |
| rms2 = F.interpolate( | |
| rms2.unsqueeze(0), | |
| size=infer_wav.shape[0] + 1, | |
| mode="linear", | |
| align_corners=True, | |
| )[0, 0, :-1] | |
| rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) | |
| infer_wav *= torch.pow( | |
| rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate) | |
| ) | |
| # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC | |
| conv_input = infer_wav[None, None, : self.sola_buffer_frame + self.sola_search_frame] | |
| cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) | |
| cor_den = torch.sqrt( | |
| F.conv1d( | |
| conv_input**2, | |
| torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device), | |
| ) | |
| + 1e-8 | |
| ) | |
| if sys.platform == "darwin": | |
| _, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) | |
| sola_offset = sola_offset.item() | |
| else: | |
| sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) | |
| logger.info(f"sola_offset = {sola_offset}") | |
| infer_wav = infer_wav[sola_offset:] | |
| if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv: | |
| infer_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
| infer_wav[: self.sola_buffer_frame] += self.sola_buffer * self.fade_out_window | |
| else: | |
| infer_wav[: self.sola_buffer_frame] = phase_vocoder( | |
| self.sola_buffer, | |
| infer_wav[: self.sola_buffer_frame], | |
| self.fade_out_window, | |
| self.fade_in_window, | |
| ) | |
| self.sola_buffer[:] = infer_wav[ | |
| self.block_frame : self.block_frame + self.sola_buffer_frame | |
| ] | |
| if sys.platform == "darwin": | |
| outdata[:] = infer_wav[: self.block_frame].cpu().numpy()[:, np.newaxis] | |
| else: | |
| outdata[:] = infer_wav[: self.block_frame].repeat(2, 1).t().cpu().numpy() | |
| total_time = time.perf_counter() - start_time | |
| logger.info(f"Infer time: {total_time:.2f}") | |
| def get_devices(self, update: bool = True): | |
| if update: | |
| sd._terminate() | |
| sd._initialize() | |
| devices = sd.query_devices() | |
| hostapis = sd.query_hostapis() | |
| for hostapi in hostapis: | |
| for device_idx in hostapi["devices"]: | |
| devices[device_idx]["hostapi_name"] = hostapi["name"] | |
| input_devices = [ | |
| f"{d['name']} ({d['hostapi_name']})" | |
| for d in devices | |
| if d["max_input_channels"] > 0 | |
| ] | |
| output_devices = [ | |
| f"{d['name']} ({d['hostapi_name']})" | |
| for d in devices | |
| if d["max_output_channels"] > 0 | |
| ] | |
| input_devices_indices = [ | |
| d["index"] if "index" in d else d["name"] | |
| for d in devices | |
| if d["max_input_channels"] > 0 | |
| ] | |
| output_devices_indices = [ | |
| d["index"] if "index" in d else d["name"] | |
| for d in devices | |
| if d["max_output_channels"] > 0 | |
| ] | |
| return ( | |
| input_devices, | |
| output_devices, | |
| input_devices_indices, | |
| output_devices_indices, | |
| ) | |
| def set_devices(self, input_device, output_device): | |
| ( | |
| input_devices, | |
| output_devices, | |
| input_device_indices, | |
| output_device_indices, | |
| ) = self.get_devices() | |
| logger.debug(f"Available input devices: {input_devices}") | |
| logger.debug(f"Available output devices: {output_devices}") | |
| logger.debug(f"Selected input device: {input_device}") | |
| logger.debug(f"Selected output device: {output_device}") | |
| if input_device not in input_devices: | |
| logger.error(f"Input device '{input_device}' is not in the list of available devices") | |
| raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available") | |
| if output_device not in output_devices: | |
| logger.error(f"Output device '{output_device}' is not in the list of available devices") | |
| raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available") | |
| sd.default.device[0] = input_device_indices[input_devices.index(input_device)] | |
| sd.default.device[1] = output_device_indices[output_devices.index(output_device)] | |
| logger.info(f"Input device set to {sd.default.device[0]}: {input_device}") | |
| logger.info(f"Output device set to {sd.default.device[1]}: {output_device}") | |
| audio_api = AudioAPI() | |
| def get_input_devices(): | |
| try: | |
| input_devices, _, _, _ = audio_api.get_devices() | |
| return input_devices | |
| except Exception as e: | |
| logger.error(f"Failed to get input devices: {e}") | |
| raise HTTPException(status_code=500, detail="Failed to get input devices") | |
| def get_output_devices(): | |
| try: | |
| _, output_devices, _, _ = audio_api.get_devices() | |
| return output_devices | |
| except Exception as e: | |
| logger.error(f"Failed to get output devices: {e}") | |
| raise HTTPException(status_code=500, detail="Failed to get output devices") | |
| def configure_audio(config_data: ConfigData): | |
| try: | |
| logger.info(f"Configuring audio with data: {config_data}") | |
| if audio_api.set_values(config_data): | |
| settings = config_data.dict() | |
| settings["use_jit"] = False | |
| with open("configs/config.json", "w", encoding='utf-8') as j: | |
| json.dump(settings, j, ensure_ascii=False) | |
| logger.info("Configuration set successfully") | |
| return {"message": "Configuration set successfully"} | |
| except HTTPException as e: | |
| logger.error(f"Configuration error: {e.detail}") | |
| raise | |
| except Exception as e: | |
| logger.error(f"Configuration failed: {e}") | |
| raise HTTPException(status_code=400, detail=f"Configuration failed: {e}") | |
| def start_conversion(): | |
| try: | |
| if not audio_api.flag_vc: | |
| audio_api.start_vc() | |
| return {"message": "Audio conversion started"} | |
| else: | |
| logger.warning("Audio conversion already running") | |
| raise HTTPException(status_code=400, detail="Audio conversion already running") | |
| except HTTPException as e: | |
| logger.error(f"Start conversion error: {e.detail}") | |
| raise | |
| except Exception as e: | |
| logger.error(f"Failed to start conversion: {e}") | |
| raise HTTPException(status_code=500, detail="Failed to start conversion: {e}") | |
| def stop_conversion(): | |
| try: | |
| if audio_api.flag_vc: | |
| audio_api.flag_vc = False | |
| global stream_latency | |
| stream_latency = -1 | |
| return {"message": "Audio conversion stopped"} | |
| else: | |
| logger.warning("Audio conversion not running") | |
| raise HTTPException(status_code=400, detail="Audio conversion not running") | |
| except HTTPException as e: | |
| logger.error(f"Stop conversion error: {e.detail}") | |
| raise | |
| except Exception as e: | |
| logger.error(f"Failed to stop conversion: {e}") | |
| raise HTTPException(status_code=500, detail="Failed to stop conversion: {e}") | |
| if __name__ == "__main__": | |
| if sys.platform == "win32": | |
| freeze_support() | |
| load_dotenv() | |
| os.environ["OMP_NUM_THREADS"] = "4" | |
| if sys.platform == "darwin": | |
| os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
| from tools.torchgate import TorchGate | |
| import tools.rvc_for_realtime as rvc_for_realtime | |
| from configs.config import Config | |
| audio_api.config = Config() | |
| audio_api.initialize_queues() | |
| uvicorn.run(app, host="0.0.0.0", port=6242) | |