Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| from dotenv import load_dotenv | |
| now_dir = os.getcwd() | |
| sys.path.append(now_dir) | |
| load_dotenv() | |
| from infer.modules.vc.modules import VC | |
| from infer.modules.uvr5.modules import uvr | |
| from infer.lib.train.process_ckpt import ( | |
| change_info, | |
| extract_small_model, | |
| merge, | |
| show_info, | |
| ) | |
| from i18n.i18n import I18nAuto | |
| from configs.config import Config | |
| from sklearn.cluster import MiniBatchKMeans | |
| import torch, platform | |
| import numpy as np | |
| import gradio as gr | |
| import faiss | |
| import fairseq | |
| import pathlib | |
| import json | |
| from time import sleep | |
| from subprocess import Popen | |
| from random import shuffle | |
| import warnings | |
| import traceback | |
| import threading | |
| import shutil | |
| import logging | |
| logging.getLogger("numba").setLevel(logging.WARNING) | |
| logging.getLogger("httpx").setLevel(logging.WARNING) | |
| logger = logging.getLogger(__name__) | |
| tmp = os.path.join(now_dir, "TEMP") | |
| shutil.rmtree(tmp, ignore_errors=True) | |
| shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) | |
| shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) | |
| os.makedirs(tmp, exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) | |
| os.environ["TEMP"] = tmp | |
| warnings.filterwarnings("ignore") | |
| torch.manual_seed(114514) | |
| config = Config() | |
| vc = VC(config) | |
| if config.dml == True: | |
| def forward_dml(ctx, x, scale): | |
| ctx.scale = scale | |
| res = x.clone().detach() | |
| return res | |
| fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml | |
| i18n = I18nAuto() | |
| logger.info(i18n) | |
| # 判断是否有能用来训练和加速推理的N卡 | |
| ngpu = torch.cuda.device_count() | |
| gpu_infos = [] | |
| mem = [] | |
| if_gpu_ok = False | |
| if torch.cuda.is_available() or ngpu != 0: | |
| for i in range(ngpu): | |
| gpu_name = torch.cuda.get_device_name(i) | |
| if any( | |
| value in gpu_name.upper() | |
| for value in [ | |
| "10", | |
| "16", | |
| "20", | |
| "30", | |
| "40", | |
| "A2", | |
| "A3", | |
| "A4", | |
| "P4", | |
| "A50", | |
| "500", | |
| "A60", | |
| "70", | |
| "80", | |
| "90", | |
| "M4", | |
| "T4", | |
| "TITAN", | |
| "4060", | |
| "L", | |
| "6000", | |
| ] | |
| ): | |
| # A10#A100#V100#A40#P40#M40#K80#A4500 | |
| if_gpu_ok = True # 至少有一张能用的N卡 | |
| gpu_infos.append("%s\t%s" % (i, gpu_name)) | |
| mem.append( | |
| int( | |
| torch.cuda.get_device_properties(i).total_memory | |
| / 1024 | |
| / 1024 | |
| / 1024 | |
| + 0.4 | |
| ) | |
| ) | |
| if if_gpu_ok and len(gpu_infos) > 0: | |
| gpu_info = "\n".join(gpu_infos) | |
| default_batch_size = min(mem) // 2 | |
| else: | |
| gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") | |
| default_batch_size = 1 | |
| gpus = "-".join([i[0] for i in gpu_infos]) | |
| class ToolButton(gr.Button, gr.components.FormComponent): | |
| """Small button with single emoji as text, fits inside gradio forms""" | |
| def __init__(self, **kwargs): | |
| super().__init__(variant="tool", **kwargs) | |
| def get_block_name(self): | |
| return "button" | |
| weight_root = os.getenv("weight_root") | |
| weight_uvr5_root = os.getenv("weight_uvr5_root") | |
| index_root = os.getenv("index_root") | |
| outside_index_root = os.getenv("outside_index_root") | |
| names = [] | |
| for name in os.listdir(weight_root): | |
| if name.endswith(".pth"): | |
| names.append(name) | |
| index_paths = [] | |
| def lookup_indices(index_root): | |
| global index_paths | |
| for root, dirs, files in os.walk(index_root, topdown=False): | |
| for name in files: | |
| if name.endswith(".index") and "trained" not in name: | |
| index_paths.append("%s/%s" % (root, name)) | |
| lookup_indices(index_root) | |
| lookup_indices(outside_index_root) | |
| uvr5_names = [] | |
| for name in os.listdir(weight_uvr5_root): | |
| if name.endswith(".pth") or "onnx" in name: | |
| uvr5_names.append(name.replace(".pth", "")) | |
| def change_choices(): | |
| names = [] | |
| for name in os.listdir(weight_root): | |
| if name.endswith(".pth"): | |
| names.append(name) | |
| index_paths = [] | |
| for root, dirs, files in os.walk(index_root, topdown=False): | |
| for name in files: | |
| if name.endswith(".index") and "trained" not in name: | |
| index_paths.append("%s/%s" % (root, name)) | |
| return {"choices": sorted(names), "__type__": "update"}, { | |
| "choices": sorted(index_paths), | |
| "__type__": "update", | |
| } | |
| def clean(): | |
| return {"value": "", "__type__": "update"} | |
| def export_onnx(ModelPath, ExportedPath): | |
| from infer.modules.onnx.export import export_onnx as eo | |
| eo(ModelPath, ExportedPath) | |
| sr_dict = { | |
| "32k": 32000, | |
| "40k": 40000, | |
| "48k": 48000, | |
| } | |
| def if_done(done, p): | |
| while 1: | |
| if p.poll() is None: | |
| sleep(0.5) | |
| else: | |
| break | |
| done[0] = True | |
| def if_done_multi(done, ps): | |
| while 1: | |
| # poll==None代表进程未结束 | |
| # 只要有一个进程未结束都不停 | |
| flag = 1 | |
| for p in ps: | |
| if p.poll() is None: | |
| flag = 0 | |
| sleep(0.5) | |
| break | |
| if flag == 1: | |
| break | |
| done[0] = True | |
| def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): | |
| sr = sr_dict[sr] | |
| os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
| f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") | |
| f.close() | |
| cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % ( | |
| config.python_cmd, | |
| trainset_dir, | |
| sr, | |
| n_p, | |
| now_dir, | |
| exp_dir, | |
| config.noparallel, | |
| config.preprocess_per, | |
| ) | |
| logger.info("Execute: " + cmd) | |
| # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir | |
| p = Popen(cmd, shell=True) | |
| # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
| done = [False] | |
| threading.Thread( | |
| target=if_done, | |
| args=( | |
| done, | |
| p, | |
| ), | |
| ).start() | |
| while 1: | |
| with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
| yield (f.read()) | |
| sleep(1) | |
| if done[0]: | |
| break | |
| with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
| log = f.read() | |
| logger.info(log) | |
| yield log | |
| # but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2]) | |
| def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe): | |
| gpus = gpus.split("-") | |
| os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
| f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") | |
| f.close() | |
| if if_f0: | |
| if f0method != "rmvpe_gpu": | |
| cmd = ( | |
| '"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s' | |
| % ( | |
| config.python_cmd, | |
| now_dir, | |
| exp_dir, | |
| n_p, | |
| f0method, | |
| ) | |
| ) | |
| logger.info("Execute: " + cmd) | |
| p = Popen( | |
| cmd, shell=True, cwd=now_dir | |
| ) # , stdin=PIPE, stdout=PIPE,stderr=PIPE | |
| # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
| done = [False] | |
| threading.Thread( | |
| target=if_done, | |
| args=( | |
| done, | |
| p, | |
| ), | |
| ).start() | |
| else: | |
| if gpus_rmvpe != "-": | |
| gpus_rmvpe = gpus_rmvpe.split("-") | |
| leng = len(gpus_rmvpe) | |
| ps = [] | |
| for idx, n_g in enumerate(gpus_rmvpe): | |
| cmd = ( | |
| '"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s ' | |
| % ( | |
| config.python_cmd, | |
| leng, | |
| idx, | |
| n_g, | |
| now_dir, | |
| exp_dir, | |
| config.is_half, | |
| ) | |
| ) | |
| logger.info("Execute: " + cmd) | |
| p = Popen( | |
| cmd, shell=True, cwd=now_dir | |
| ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
| ps.append(p) | |
| # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
| done = [False] | |
| threading.Thread( | |
| target=if_done_multi, # | |
| args=( | |
| done, | |
| ps, | |
| ), | |
| ).start() | |
| else: | |
| cmd = ( | |
| config.python_cmd | |
| + ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" ' | |
| % ( | |
| now_dir, | |
| exp_dir, | |
| ) | |
| ) | |
| logger.info("Execute: " + cmd) | |
| p = Popen( | |
| cmd, shell=True, cwd=now_dir | |
| ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
| p.wait() | |
| done = [True] | |
| while 1: | |
| with open( | |
| "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" | |
| ) as f: | |
| yield (f.read()) | |
| sleep(1) | |
| if done[0]: | |
| break | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
| log = f.read() | |
| logger.info(log) | |
| yield log | |
| # 对不同part分别开多进程 | |
| """ | |
| n_part=int(sys.argv[1]) | |
| i_part=int(sys.argv[2]) | |
| i_gpu=sys.argv[3] | |
| exp_dir=sys.argv[4] | |
| os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) | |
| """ | |
| leng = len(gpus) | |
| ps = [] | |
| for idx, n_g in enumerate(gpus): | |
| cmd = ( | |
| '"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s %s' | |
| % ( | |
| config.python_cmd, | |
| config.device, | |
| leng, | |
| idx, | |
| n_g, | |
| now_dir, | |
| exp_dir, | |
| version19, | |
| config.is_half, | |
| ) | |
| ) | |
| logger.info("Execute: " + cmd) | |
| p = Popen( | |
| cmd, shell=True, cwd=now_dir | |
| ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
| ps.append(p) | |
| # 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
| done = [False] | |
| threading.Thread( | |
| target=if_done_multi, | |
| args=( | |
| done, | |
| ps, | |
| ), | |
| ).start() | |
| while 1: | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
| yield (f.read()) | |
| sleep(1) | |
| if done[0]: | |
| break | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
| log = f.read() | |
| logger.info(log) | |
| yield log | |
| def get_pretrained_models(path_str, f0_str, sr2): | |
| if_pretrained_generator_exist = os.access( | |
| "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
| ) | |
| if_pretrained_discriminator_exist = os.access( | |
| "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
| ) | |
| if not if_pretrained_generator_exist: | |
| logger.warning( | |
| "assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model", | |
| path_str, | |
| f0_str, | |
| sr2, | |
| ) | |
| if not if_pretrained_discriminator_exist: | |
| logger.warning( | |
| "assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model", | |
| path_str, | |
| f0_str, | |
| sr2, | |
| ) | |
| return ( | |
| ( | |
| "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) | |
| if if_pretrained_generator_exist | |
| else "" | |
| ), | |
| ( | |
| "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) | |
| if if_pretrained_discriminator_exist | |
| else "" | |
| ), | |
| ) | |
| def change_sr2(sr2, if_f0_3, version19): | |
| path_str = "" if version19 == "v1" else "_v2" | |
| f0_str = "f0" if if_f0_3 else "" | |
| return get_pretrained_models(path_str, f0_str, sr2) | |
| def change_version19(sr2, if_f0_3, version19): | |
| path_str = "" if version19 == "v1" else "_v2" | |
| if sr2 == "32k" and version19 == "v1": | |
| sr2 = "40k" | |
| to_return_sr2 = ( | |
| {"choices": ["40k", "48k"], "__type__": "update", "value": sr2} | |
| if version19 == "v1" | |
| else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2} | |
| ) | |
| f0_str = "f0" if if_f0_3 else "" | |
| return ( | |
| *get_pretrained_models(path_str, f0_str, sr2), | |
| to_return_sr2, | |
| ) | |
| def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15 | |
| path_str = "" if version19 == "v1" else "_v2" | |
| return ( | |
| {"visible": if_f0_3, "__type__": "update"}, | |
| {"visible": if_f0_3, "__type__": "update"}, | |
| *get_pretrained_models(path_str, "f0" if if_f0_3 == True else "", sr2), | |
| ) | |
| # but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16]) | |
| def click_train( | |
| exp_dir1, | |
| sr2, | |
| if_f0_3, | |
| spk_id5, | |
| save_epoch10, | |
| total_epoch11, | |
| batch_size12, | |
| if_save_latest13, | |
| pretrained_G14, | |
| pretrained_D15, | |
| gpus16, | |
| if_cache_gpu17, | |
| if_save_every_weights18, | |
| version19, | |
| ): | |
| # 生成filelist | |
| exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
| os.makedirs(exp_dir, exist_ok=True) | |
| gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) | |
| feature_dir = ( | |
| "%s/3_feature256" % (exp_dir) | |
| if version19 == "v1" | |
| else "%s/3_feature768" % (exp_dir) | |
| ) | |
| if if_f0_3: | |
| f0_dir = "%s/2a_f0" % (exp_dir) | |
| f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) | |
| names = ( | |
| set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(feature_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(f0_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | |
| ) | |
| else: | |
| names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | |
| [name.split(".")[0] for name in os.listdir(feature_dir)] | |
| ) | |
| opt = [] | |
| for name in names: | |
| if if_f0_3: | |
| opt.append( | |
| "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | |
| % ( | |
| gt_wavs_dir.replace("\\", "\\\\"), | |
| name, | |
| feature_dir.replace("\\", "\\\\"), | |
| name, | |
| f0_dir.replace("\\", "\\\\"), | |
| name, | |
| f0nsf_dir.replace("\\", "\\\\"), | |
| name, | |
| spk_id5, | |
| ) | |
| ) | |
| else: | |
| opt.append( | |
| "%s/%s.wav|%s/%s.npy|%s" | |
| % ( | |
| gt_wavs_dir.replace("\\", "\\\\"), | |
| name, | |
| feature_dir.replace("\\", "\\\\"), | |
| name, | |
| spk_id5, | |
| ) | |
| ) | |
| fea_dim = 256 if version19 == "v1" else 768 | |
| if if_f0_3: | |
| for _ in range(2): | |
| opt.append( | |
| "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | |
| % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) | |
| ) | |
| else: | |
| for _ in range(2): | |
| opt.append( | |
| "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" | |
| % (now_dir, sr2, now_dir, fea_dim, spk_id5) | |
| ) | |
| shuffle(opt) | |
| with open("%s/filelist.txt" % exp_dir, "w") as f: | |
| f.write("\n".join(opt)) | |
| logger.debug("Write filelist done") | |
| # 生成config#无需生成config | |
| # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" | |
| logger.info("Use gpus: %s", str(gpus16)) | |
| if pretrained_G14 == "": | |
| logger.info("No pretrained Generator") | |
| if pretrained_D15 == "": | |
| logger.info("No pretrained Discriminator") | |
| if version19 == "v1" or sr2 == "40k": | |
| config_path = "v1/%s.json" % sr2 | |
| else: | |
| config_path = "v2/%s.json" % sr2 | |
| config_save_path = os.path.join(exp_dir, "config.json") | |
| if not pathlib.Path(config_save_path).exists(): | |
| with open(config_save_path, "w", encoding="utf-8") as f: | |
| json.dump( | |
| config.json_config[config_path], | |
| f, | |
| ensure_ascii=False, | |
| indent=4, | |
| sort_keys=True, | |
| ) | |
| f.write("\n") | |
| if gpus16: | |
| cmd = ( | |
| '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' | |
| % ( | |
| config.python_cmd, | |
| exp_dir1, | |
| sr2, | |
| 1 if if_f0_3 else 0, | |
| batch_size12, | |
| gpus16, | |
| total_epoch11, | |
| save_epoch10, | |
| "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | |
| "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | |
| 1 if if_save_latest13 == "yes" else 0, | |
| 1 if if_cache_gpu17 == "yes" else 0, | |
| 1 if if_save_every_weights18 == "yes" else 0, | |
| version19, | |
| ) | |
| ) | |
| else: | |
| cmd = ( | |
| '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' | |
| % ( | |
| config.python_cmd, | |
| exp_dir1, | |
| sr2, | |
| 1 if if_f0_3 else 0, | |
| batch_size12, | |
| total_epoch11, | |
| save_epoch10, | |
| "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | |
| "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | |
| 1 if if_save_latest13 == "yes" else 0, | |
| 1 if if_cache_gpu17 == "yes" else 0, | |
| 1 if if_save_every_weights18 == "yes" else 0, | |
| version19, | |
| ) | |
| ) | |
| logger.info("Execute: " + cmd) | |
| p = Popen(cmd, shell=True, cwd=now_dir) | |
| p.wait() | |
| return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" | |
| # but4.click(train_index, [exp_dir1], info3) | |
| def train_index(exp_dir1, version19): | |
| # exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
| exp_dir = "logs/%s" % (exp_dir1) | |
| os.makedirs(exp_dir, exist_ok=True) | |
| feature_dir = ( | |
| "%s/3_feature256" % (exp_dir) | |
| if version19 == "v1" | |
| else "%s/3_feature768" % (exp_dir) | |
| ) | |
| if not os.path.exists(feature_dir): | |
| return "请先进行特征提取!" | |
| listdir_res = list(os.listdir(feature_dir)) | |
| if len(listdir_res) == 0: | |
| return "请先进行特征提取!" | |
| infos = [] | |
| npys = [] | |
| for name in sorted(listdir_res): | |
| phone = np.load("%s/%s" % (feature_dir, name)) | |
| npys.append(phone) | |
| big_npy = np.concatenate(npys, 0) | |
| big_npy_idx = np.arange(big_npy.shape[0]) | |
| np.random.shuffle(big_npy_idx) | |
| big_npy = big_npy[big_npy_idx] | |
| if big_npy.shape[0] > 2e5: | |
| infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]) | |
| yield "\n".join(infos) | |
| try: | |
| big_npy = ( | |
| MiniBatchKMeans( | |
| n_clusters=10000, | |
| verbose=True, | |
| batch_size=256 * config.n_cpu, | |
| compute_labels=False, | |
| init="random", | |
| ) | |
| .fit(big_npy) | |
| .cluster_centers_ | |
| ) | |
| except: | |
| info = traceback.format_exc() | |
| logger.info(info) | |
| infos.append(info) | |
| yield "\n".join(infos) | |
| np.save("%s/total_fea.npy" % exp_dir, big_npy) | |
| n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
| infos.append("%s,%s" % (big_npy.shape, n_ivf)) | |
| yield "\n".join(infos) | |
| index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) | |
| # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf) | |
| infos.append("training") | |
| yield "\n".join(infos) | |
| index_ivf = faiss.extract_index_ivf(index) # | |
| index_ivf.nprobe = 1 | |
| index.train(big_npy) | |
| faiss.write_index( | |
| index, | |
| "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
| % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
| ) | |
| infos.append("adding") | |
| yield "\n".join(infos) | |
| batch_size_add = 8192 | |
| for i in range(0, big_npy.shape[0], batch_size_add): | |
| index.add(big_npy[i : i + batch_size_add]) | |
| faiss.write_index( | |
| index, | |
| "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
| % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
| ) | |
| infos.append( | |
| "成功构建索引 added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
| % (n_ivf, index_ivf.nprobe, exp_dir1, version19) | |
| ) | |
| try: | |
| link = os.link if platform.system() == "Windows" else os.symlink | |
| link( | |
| "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
| % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
| "%s/%s_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
| % ( | |
| outside_index_root, | |
| exp_dir1, | |
| n_ivf, | |
| index_ivf.nprobe, | |
| exp_dir1, | |
| version19, | |
| ), | |
| ) | |
| infos.append("链接索引到外部-%s" % (outside_index_root)) | |
| except: | |
| infos.append("链接索引到外部-%s失败" % (outside_index_root)) | |
| # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19)) | |
| # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19)) | |
| yield "\n".join(infos) | |
| # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) | |
| def train1key( | |
| exp_dir1, | |
| sr2, | |
| if_f0_3, | |
| trainset_dir4, | |
| spk_id5, | |
| np7, | |
| f0method8, | |
| save_epoch10, | |
| total_epoch11, | |
| batch_size12, | |
| if_save_latest13, | |
| pretrained_G14, | |
| pretrained_D15, | |
| gpus16, | |
| if_cache_gpu17, | |
| if_save_every_weights18, | |
| version19, | |
| gpus_rmvpe, | |
| ): | |
| infos = [] | |
| def get_info_str(strr): | |
| infos.append(strr) | |
| return "\n".join(infos) | |
| # step1:处理数据 | |
| yield get_info_str(i18n("step1:正在处理数据")) | |
| [get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)] | |
| # step2a:提取音高 | |
| yield get_info_str(i18n("step2:正在提取音高&正在提取特征")) | |
| [ | |
| get_info_str(_) | |
| for _ in extract_f0_feature( | |
| gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe | |
| ) | |
| ] | |
| # step3a:训练模型 | |
| yield get_info_str(i18n("step3a:正在训练模型")) | |
| click_train( | |
| exp_dir1, | |
| sr2, | |
| if_f0_3, | |
| spk_id5, | |
| save_epoch10, | |
| total_epoch11, | |
| batch_size12, | |
| if_save_latest13, | |
| pretrained_G14, | |
| pretrained_D15, | |
| gpus16, | |
| if_cache_gpu17, | |
| if_save_every_weights18, | |
| version19, | |
| ) | |
| yield get_info_str( | |
| i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log") | |
| ) | |
| # step3b:训练索引 | |
| [get_info_str(_) for _ in train_index(exp_dir1, version19)] | |
| yield get_info_str(i18n("全流程结束!")) | |
| # ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__]) | |
| def change_info_(ckpt_path): | |
| if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): | |
| return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | |
| try: | |
| with open( | |
| ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" | |
| ) as f: | |
| info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) | |
| sr, f0 = info["sample_rate"], info["if_f0"] | |
| version = "v2" if ("version" in info and info["version"] == "v2") else "v1" | |
| return sr, str(f0), version | |
| except: | |
| traceback.print_exc() | |
| return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | |
| F0GPUVisible = config.dml == False | |
| def change_f0_method(f0method8): | |
| if f0method8 == "rmvpe_gpu": | |
| visible = F0GPUVisible | |
| else: | |
| visible = False | |
| return {"visible": visible, "__type__": "update"} | |