Spaces:
Runtime error
Runtime error
| import math | |
| import random | |
| from typing import Optional, Tuple | |
| from fairseq.checkpoint_utils import load_model_ensemble_and_task | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| # from fairseq.data.data_utils import compute_mask_indices | |
| from fairseq.utils import index_put | |
| # @torch.jit.script | |
| def pad_to_multiple(x, multiple, dim=-1, value=0): | |
| # Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41 | |
| if x is None: | |
| return None, 0 | |
| tsz = x.size(dim) | |
| m = tsz / multiple | |
| remainder = math.ceil(m) * multiple - tsz | |
| if int(tsz % multiple) == 0: | |
| return x, 0 | |
| pad_offset = (0,) * (-1 - dim) * 2 | |
| return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder | |
| def extract_features( | |
| self, | |
| x, | |
| padding_mask=None, | |
| tgt_layer=None, | |
| min_layer=0, | |
| ): | |
| if padding_mask is not None: | |
| x = index_put(x, padding_mask, 0) | |
| x_conv = self.pos_conv(x.transpose(1, 2)) | |
| x_conv = x_conv.transpose(1, 2) | |
| x = x + x_conv | |
| if not self.layer_norm_first: | |
| x = self.layer_norm(x) | |
| # pad to the sequence length dimension | |
| x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0) | |
| if pad_length > 0 and padding_mask is None: | |
| padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) | |
| padding_mask[:, -pad_length:] = True | |
| else: | |
| padding_mask, _ = pad_to_multiple( | |
| padding_mask, self.required_seq_len_multiple, dim=-1, value=True | |
| ) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| # B x T x C -> T x B x C | |
| x = x.transpose(0, 1) | |
| layer_results = [] | |
| r = None | |
| for i, layer in enumerate(self.layers): | |
| dropout_probability = np.random.random() if self.layerdrop > 0 else 1 | |
| if not self.training or (dropout_probability > self.layerdrop): | |
| x, (z, lr) = layer( | |
| x, self_attn_padding_mask=padding_mask, need_weights=False | |
| ) | |
| if i >= min_layer: | |
| layer_results.append((x, z, lr)) | |
| if i == tgt_layer: | |
| r = x | |
| break | |
| if r is not None: | |
| x = r | |
| # T x B x C -> B x T x C | |
| x = x.transpose(0, 1) | |
| # undo paddding | |
| if pad_length > 0: | |
| x = x[:, :-pad_length] | |
| def undo_pad(a, b, c): | |
| return ( | |
| a[:-pad_length], | |
| b[:-pad_length] if b is not None else b, | |
| c[:-pad_length], | |
| ) | |
| layer_results = [undo_pad(*u) for u in layer_results] | |
| return x, layer_results | |
| def compute_mask_indices( | |
| shape: Tuple[int, int], | |
| padding_mask: Optional[torch.Tensor], | |
| mask_prob: float, | |
| mask_length: int, | |
| mask_type: str = "static", | |
| mask_other: float = 0.0, | |
| min_masks: int = 0, | |
| no_overlap: bool = False, | |
| min_space: int = 0, | |
| require_same_masks: bool = True, | |
| mask_dropout: float = 0.0, | |
| ) -> torch.Tensor: | |
| """ | |
| Computes random mask spans for a given shape | |
| Args: | |
| shape: the the shape for which to compute masks. | |
| should be of size 2 where first element is batch size and 2nd is timesteps | |
| padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements | |
| mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by | |
| number of timesteps divided by length of mask span to mask approximately this percentage of all elements. | |
| however due to overlaps, the actual number will be smaller (unless no_overlap is True) | |
| mask_type: how to compute mask lengths | |
| static = fixed size | |
| uniform = sample from uniform distribution [mask_other, mask_length*2] | |
| normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element | |
| poisson = sample from possion distribution with lambda = mask length | |
| min_masks: minimum number of masked spans | |
| no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping | |
| min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans | |
| require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample | |
| mask_dropout: randomly dropout this percentage of masks in each example | |
| """ | |
| bsz, all_sz = shape | |
| mask = torch.full((bsz, all_sz), False) | |
| all_num_mask = int( | |
| # add a random number for probabilistic rounding | |
| mask_prob * all_sz / float(mask_length) | |
| + torch.rand([1]).item() | |
| ) | |
| all_num_mask = max(min_masks, all_num_mask) | |
| mask_idcs = [] | |
| for i in range(bsz): | |
| if padding_mask is not None: | |
| sz = all_sz - padding_mask[i].long().sum().item() | |
| num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand()) | |
| num_mask = max(min_masks, num_mask) | |
| else: | |
| sz = all_sz | |
| num_mask = all_num_mask | |
| if mask_type == "static": | |
| lengths = torch.full([num_mask], mask_length) | |
| elif mask_type == "uniform": | |
| lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask]) | |
| elif mask_type == "normal": | |
| lengths = torch.normal(mask_length, mask_other, size=[num_mask]) | |
| lengths = [max(1, int(round(x))) for x in lengths] | |
| else: | |
| raise Exception("unknown mask selection " + mask_type) | |
| if sum(lengths) == 0: | |
| lengths[0] = min(mask_length, sz - 1) | |
| if no_overlap: | |
| mask_idc = [] | |
| def arrange(s, e, length, keep_length): | |
| span_start = torch.randint(low=s, high=e - length, size=[1]).item() | |
| mask_idc.extend(span_start + i for i in range(length)) | |
| new_parts = [] | |
| if span_start - s - min_space >= keep_length: | |
| new_parts.append((s, span_start - min_space + 1)) | |
| if e - span_start - length - min_space > keep_length: | |
| new_parts.append((span_start + length + min_space, e)) | |
| return new_parts | |
| parts = [(0, sz)] | |
| min_length = min(lengths) | |
| for length in sorted(lengths, reverse=True): | |
| t = [e - s if e - s >= length + min_space else 0 for s, e in parts] | |
| lens = torch.asarray(t, dtype=torch.int) | |
| l_sum = torch.sum(lens) | |
| if l_sum == 0: | |
| break | |
| probs = lens / torch.sum(lens) | |
| c = torch.multinomial(probs.float(), len(parts)).item() | |
| s, e = parts.pop(c) | |
| parts.extend(arrange(s, e, length, min_length)) | |
| mask_idc = torch.asarray(mask_idc) | |
| else: | |
| min_len = min(lengths) | |
| if sz - min_len <= num_mask: | |
| min_len = sz - num_mask - 1 | |
| mask_idc = torch.asarray( | |
| random.sample([i for i in range(sz - min_len)], num_mask) | |
| ) | |
| mask_idc = torch.asarray( | |
| [ | |
| mask_idc[j] + offset | |
| for j in range(len(mask_idc)) | |
| for offset in range(lengths[j]) | |
| ] | |
| ) | |
| mask_idcs.append(torch.unique(mask_idc[mask_idc < sz])) | |
| min_len = min([len(m) for m in mask_idcs]) | |
| for i, mask_idc in enumerate(mask_idcs): | |
| if isinstance(mask_idc, torch.Tensor): | |
| mask_idc = torch.asarray(mask_idc, dtype=torch.float) | |
| if len(mask_idc) > min_len and require_same_masks: | |
| mask_idc = torch.asarray( | |
| random.sample([i for i in range(mask_idc)], min_len) | |
| ) | |
| if mask_dropout > 0: | |
| num_holes = int(round(len(mask_idc) * mask_dropout)) | |
| mask_idc = torch.asarray( | |
| random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes) | |
| ) | |
| mask[i, mask_idc.int()] = True | |
| return mask | |
| def apply_mask(self, x, padding_mask, target_list): | |
| B, T, C = x.shape | |
| torch.zeros_like(x) | |
| if self.mask_prob > 0: | |
| mask_indices = compute_mask_indices( | |
| (B, T), | |
| padding_mask, | |
| self.mask_prob, | |
| self.mask_length, | |
| self.mask_selection, | |
| self.mask_other, | |
| min_masks=2, | |
| no_overlap=self.no_mask_overlap, | |
| min_space=self.mask_min_space, | |
| ) | |
| mask_indices = mask_indices.to(x.device) | |
| x[mask_indices] = self.mask_emb | |
| else: | |
| mask_indices = None | |
| if self.mask_channel_prob > 0: | |
| mask_channel_indices = compute_mask_indices( | |
| (B, C), | |
| None, | |
| self.mask_channel_prob, | |
| self.mask_channel_length, | |
| self.mask_channel_selection, | |
| self.mask_channel_other, | |
| no_overlap=self.no_mask_channel_overlap, | |
| min_space=self.mask_channel_min_space, | |
| ) | |
| mask_channel_indices = ( | |
| mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1) | |
| ) | |
| x[mask_channel_indices] = 0 | |
| return x, mask_indices | |
| def get_hubert_model( | |
| model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu") | |
| ): | |
| models, _, _ = load_model_ensemble_and_task( | |
| [model_path], | |
| suffix="", | |
| ) | |
| hubert_model = models[0] | |
| hubert_model = hubert_model.to(device) | |
| def _apply_mask(x, padding_mask, target_list): | |
| return apply_mask(hubert_model, x, padding_mask, target_list) | |
| hubert_model.apply_mask = _apply_mask | |
| def _extract_features( | |
| x, | |
| padding_mask=None, | |
| tgt_layer=None, | |
| min_layer=0, | |
| ): | |
| return extract_features( | |
| hubert_model.encoder, | |
| x, | |
| padding_mask=padding_mask, | |
| tgt_layer=tgt_layer, | |
| min_layer=min_layer, | |
| ) | |
| hubert_model.encoder.extract_features = _extract_features | |
| hubert_model._forward = hubert_model.forward | |
| def hubert_extract_features( | |
| self, | |
| source: torch.Tensor, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| mask: bool = False, | |
| ret_conv: bool = False, | |
| output_layer: Optional[int] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| res = self._forward( | |
| source, | |
| padding_mask=padding_mask, | |
| mask=mask, | |
| features_only=True, | |
| output_layer=output_layer, | |
| ) | |
| feature = res["features"] if ret_conv else res["x"] | |
| return feature, res["padding_mask"] | |
| def _hubert_extract_features( | |
| source: torch.Tensor, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| mask: bool = False, | |
| ret_conv: bool = False, | |
| output_layer: Optional[int] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| return hubert_extract_features( | |
| hubert_model, source, padding_mask, mask, ret_conv, output_layer | |
| ) | |
| hubert_model.extract_features = _hubert_extract_features | |
| def infer(source, padding_mask, output_layer: torch.Tensor): | |
| output_layer = output_layer.item() | |
| logits = hubert_model.extract_features( | |
| source=source, padding_mask=padding_mask, output_layer=output_layer | |
| ) | |
| feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0] | |
| return feats | |
| hubert_model.infer = infer | |
| # hubert_model.forward=infer | |
| # hubert_model.forward | |
| return hubert_model | |