Spaces:
Runtime error
Runtime error
| import torch | |
| import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import | |
| # pylint: disable=protected-access, missing-function-docstring, line-too-long | |
| original_torch_bmm = torch.bmm | |
| def torch_bmm(input, mat2, *, out=None): | |
| if input.dtype != mat2.dtype: | |
| mat2 = mat2.to(input.dtype) | |
| # ARC GPUs can't allocate more than 4GB to a single block, Slice it: | |
| batch_size_attention, input_tokens, mat2_shape = ( | |
| input.shape[0], | |
| input.shape[1], | |
| mat2.shape[2], | |
| ) | |
| block_multiply = input.element_size() | |
| slice_block_size = input_tokens * mat2_shape / 1024 / 1024 * block_multiply | |
| block_size = batch_size_attention * slice_block_size | |
| split_slice_size = batch_size_attention | |
| if block_size > 4: | |
| do_split = True | |
| # Find something divisible with the input_tokens | |
| while (split_slice_size * slice_block_size) > 4: | |
| split_slice_size = split_slice_size // 2 | |
| if split_slice_size <= 1: | |
| split_slice_size = 1 | |
| break | |
| else: | |
| do_split = False | |
| split_2_slice_size = input_tokens | |
| if split_slice_size * slice_block_size > 4: | |
| slice_block_size2 = split_slice_size * mat2_shape / 1024 / 1024 * block_multiply | |
| do_split_2 = True | |
| # Find something divisible with the input_tokens | |
| while (split_2_slice_size * slice_block_size2) > 4: | |
| split_2_slice_size = split_2_slice_size // 2 | |
| if split_2_slice_size <= 1: | |
| split_2_slice_size = 1 | |
| break | |
| else: | |
| do_split_2 = False | |
| if do_split: | |
| hidden_states = torch.zeros( | |
| input.shape[0], | |
| input.shape[1], | |
| mat2.shape[2], | |
| device=input.device, | |
| dtype=input.dtype, | |
| ) | |
| for i in range(batch_size_attention // split_slice_size): | |
| start_idx = i * split_slice_size | |
| end_idx = (i + 1) * split_slice_size | |
| if do_split_2: | |
| for i2 in range( | |
| input_tokens // split_2_slice_size | |
| ): # pylint: disable=invalid-name | |
| start_idx_2 = i2 * split_2_slice_size | |
| end_idx_2 = (i2 + 1) * split_2_slice_size | |
| hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = ( | |
| original_torch_bmm( | |
| input[start_idx:end_idx, start_idx_2:end_idx_2], | |
| mat2[start_idx:end_idx, start_idx_2:end_idx_2], | |
| out=out, | |
| ) | |
| ) | |
| else: | |
| hidden_states[start_idx:end_idx] = original_torch_bmm( | |
| input[start_idx:end_idx], mat2[start_idx:end_idx], out=out | |
| ) | |
| else: | |
| return original_torch_bmm(input, mat2, out=out) | |
| return hidden_states | |
| original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention | |
| def scaled_dot_product_attention( | |
| query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ): | |
| # ARC GPUs can't allocate more than 4GB to a single block, Slice it: | |
| if len(query.shape) == 3: | |
| batch_size_attention, query_tokens, shape_four = query.shape | |
| shape_one = 1 | |
| no_shape_one = True | |
| else: | |
| shape_one, batch_size_attention, query_tokens, shape_four = query.shape | |
| no_shape_one = False | |
| block_multiply = query.element_size() | |
| slice_block_size = ( | |
| shape_one * query_tokens * shape_four / 1024 / 1024 * block_multiply | |
| ) | |
| block_size = batch_size_attention * slice_block_size | |
| split_slice_size = batch_size_attention | |
| if block_size > 4: | |
| do_split = True | |
| # Find something divisible with the shape_one | |
| while (split_slice_size * slice_block_size) > 4: | |
| split_slice_size = split_slice_size // 2 | |
| if split_slice_size <= 1: | |
| split_slice_size = 1 | |
| break | |
| else: | |
| do_split = False | |
| split_2_slice_size = query_tokens | |
| if split_slice_size * slice_block_size > 4: | |
| slice_block_size2 = ( | |
| shape_one * split_slice_size * shape_four / 1024 / 1024 * block_multiply | |
| ) | |
| do_split_2 = True | |
| # Find something divisible with the batch_size_attention | |
| while (split_2_slice_size * slice_block_size2) > 4: | |
| split_2_slice_size = split_2_slice_size // 2 | |
| if split_2_slice_size <= 1: | |
| split_2_slice_size = 1 | |
| break | |
| else: | |
| do_split_2 = False | |
| if do_split: | |
| hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype) | |
| for i in range(batch_size_attention // split_slice_size): | |
| start_idx = i * split_slice_size | |
| end_idx = (i + 1) * split_slice_size | |
| if do_split_2: | |
| for i2 in range( | |
| query_tokens // split_2_slice_size | |
| ): # pylint: disable=invalid-name | |
| start_idx_2 = i2 * split_2_slice_size | |
| end_idx_2 = (i2 + 1) * split_2_slice_size | |
| if no_shape_one: | |
| hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = ( | |
| original_scaled_dot_product_attention( | |
| query[start_idx:end_idx, start_idx_2:end_idx_2], | |
| key[start_idx:end_idx, start_idx_2:end_idx_2], | |
| value[start_idx:end_idx, start_idx_2:end_idx_2], | |
| attn_mask=( | |
| attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] | |
| if attn_mask is not None | |
| else attn_mask | |
| ), | |
| dropout_p=dropout_p, | |
| is_causal=is_causal, | |
| ) | |
| ) | |
| else: | |
| hidden_states[:, start_idx:end_idx, start_idx_2:end_idx_2] = ( | |
| original_scaled_dot_product_attention( | |
| query[:, start_idx:end_idx, start_idx_2:end_idx_2], | |
| key[:, start_idx:end_idx, start_idx_2:end_idx_2], | |
| value[:, start_idx:end_idx, start_idx_2:end_idx_2], | |
| attn_mask=( | |
| attn_mask[ | |
| :, start_idx:end_idx, start_idx_2:end_idx_2 | |
| ] | |
| if attn_mask is not None | |
| else attn_mask | |
| ), | |
| dropout_p=dropout_p, | |
| is_causal=is_causal, | |
| ) | |
| ) | |
| else: | |
| if no_shape_one: | |
| hidden_states[start_idx:end_idx] = ( | |
| original_scaled_dot_product_attention( | |
| query[start_idx:end_idx], | |
| key[start_idx:end_idx], | |
| value[start_idx:end_idx], | |
| attn_mask=( | |
| attn_mask[start_idx:end_idx] | |
| if attn_mask is not None | |
| else attn_mask | |
| ), | |
| dropout_p=dropout_p, | |
| is_causal=is_causal, | |
| ) | |
| ) | |
| else: | |
| hidden_states[:, start_idx:end_idx] = ( | |
| original_scaled_dot_product_attention( | |
| query[:, start_idx:end_idx], | |
| key[:, start_idx:end_idx], | |
| value[:, start_idx:end_idx], | |
| attn_mask=( | |
| attn_mask[:, start_idx:end_idx] | |
| if attn_mask is not None | |
| else attn_mask | |
| ), | |
| dropout_p=dropout_p, | |
| is_causal=is_causal, | |
| ) | |
| ) | |
| else: | |
| return original_scaled_dot_product_attention( | |
| query, | |
| key, | |
| value, | |
| attn_mask=attn_mask, | |
| dropout_p=dropout_p, | |
| is_causal=is_causal, | |
| ) | |
| return hidden_states | |
| def attention_init(): | |
| # ARC GPUs can't allocate more than 4GB to a single block: | |
| torch.bmm = torch_bmm | |
| torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention | |