Spaces:
Runtime error
Runtime error
| from i18n.i18n import I18nAuto | |
| from configs.config import Config | |
| from sklearn.cluster import MiniBatchKMeans | |
| import torch, platform | |
| import numpy as np | |
| import gradio as gr | |
| import faiss | |
| import fairseq | |
| import pathlib | |
| import json | |
| from time import sleep | |
| from subprocess import Popen | |
| from random import shuffle | |
| import warnings | |
| import traceback | |
| import threading | |
| import shutil | |
| import logging | |
| import sys | |
| from dotenv import load_dotenv | |
| from infer.modules.vc.modules import VC | |
| import shutil, glob | |
| from easyfuncs import download_from_url, CachedModels | |
| os.makedirs("dataset",exist_ok=True) | |
| model_library = CachedModels() | |
| logging.getLogger("numba").setLevel(logging.WARNING) | |
| logging.getLogger("httpx").setLevel(logging.WARNING) | |
| logger = logging.getLogger(__name__) | |
| tmp = os.path.join(now_dir, "TEMP") | |
| shutil.rmtree(tmp, ignore_errors=True) | |
| shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) | |
| shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) | |
| os.makedirs(tmp, exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) | |
| os.environ["TEMP"] = tmp | |
| warnings.filterwarnings("ignore") | |
| torch.manual_seed(114514) | |
| config = Config() | |
| vc = VC(config) | |
| class ToolButton(gr.Button, gr.components.FormComponent): | |
| """Small button with single emoji as text, fits inside gradio forms""" | |
| def __init__(self, **kwargs): | |
| super().__init__(variant="tool", **kwargs) | |
| def get_block_name(self): | |
| return "button" | |
| weight_root = os.getenv("weight_root") | |
| index_root = os.getenv("index_root") | |
| outside_index_root = os.getenv("outside_index_root") | |
| names = [] | |
| for name in os.listdir(weight_root): | |
| if name.endswith(".pth"): | |
| names.append(name) | |
| index_paths = [] | |
| def lookup_indices(index_root): | |
| global index_paths | |
| for root, dirs, files in os.walk(index_root, topdown=False): | |
| for name in files: | |
| if name.endswith(".index") and "trained" not in name: | |
| index_paths.append("%s/%s" % (root, name)) | |
| lookup_indices(index_root) | |
| lookup_indices(outside_index_root) | |
| uvr5_names = [] | |
| for name in os.listdir(weight_uvr5_root): | |
| if name.endswith(".pth") or "onnx" in name: | |
| uvr5_names.append(name.replace(".pth", "")) | |
| def change_choices(): | |
| names = [] | |
| for name in os.listdir(weight_root): | |
| if name.endswith(".pth"): | |
| names.append(name) | |
| index_paths = [] | |
| for root, dirs, files in os.walk(index_root, topdown=False): | |
| for name in files: | |
| if name.endswith(".index") and "trained" not in name: | |
| index_paths.append("%s/%s" % (root, name)) | |
| return {"choices": sorted(names), "__type__": "update"}, { | |
| "choices": sorted(index_paths), | |
| "__type__": "update", | |
| } | |
| def clean(): | |
| return {"value": "", "__type__": "update"} | |
| def if_done(done, p): | |
| while 1: | |
| if p.poll() is None: | |
| sleep(0.5) | |
| else: | |
| break | |
| done[0] = True | |
| def if_done_multi(done, ps): | |
| while 1: | |
| # poll==None代表进程未结束 | |
| # 只要有一个进程未结束都不停 | |
| flag = 1 | |
| for p in ps: | |
| if p.poll() is None: | |
| flag = 0 | |
| sleep(0.5) | |
| break | |
| if flag == 1: | |
| break | |
| done[0] = True | |
| with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app: | |
| with gr.Row(): | |
| gr.Markdown("<center><h1> RVC V2 - EASY GUI") | |
| with gr.Tabs(): | |
| with gr.TabItem("Inference"): | |
| with gr.Row(): | |
| voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True) | |
| refresh_button = gr.Button("Refresh", variant="primary") | |
| spk_item = gr.Slider( | |
| minimum=0, | |
| maximum=2333, | |
| step=1, | |
| label="Speaker ID", | |
| value=0, | |
| visible=False, | |
| interactive=True, | |
| ) | |
| vc_transform0 = gr.Number( | |
| label="Pitch", | |
| value=0 | |
| ) | |
| but0 = gr.Button(value="Convert", variant="primary") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| dropbox = gr.File(label="Drop your audio here & hit the Reload button.") | |
| with gr.Row(): | |
| record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath") | |
| with gr.Row(): | |
| paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')] | |
| input_audio0 = gr.Dropdown( | |
| label="Input Path", | |
| value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '', | |
| choices=paths_for_files('audios'), # Only show absolute paths for audio files ending in .mp3, .wav, .flac or .ogg | |
| allow_custom_value=True | |
| ) | |
| with gr.Row(): | |
| audio_player = gr.Audio() | |
| input_audio0.change( | |
| inputs=[input_audio0], | |
| outputs=[audio_player], | |
| fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None | |
| ) | |
| record_button.stop_recording( | |
| fn=lambda audio:audio, #TODO save wav lambda | |
| inputs=[record_button], | |
| outputs=[input_audio0]) | |
| dropbox.upload( | |
| fn=lambda audio:audio.name, | |
| inputs=[dropbox], | |
| outputs=[input_audio0]) | |
| with gr.Column(): | |
| with gr.Accordion("Change Index", open=False): | |
| file_index2 = gr.Dropdown( | |
| label="Change Index", | |
| choices=sorted(index_paths), | |
| interactive=True, | |
| value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else '' | |
| ) | |
| index_rate1 = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| label="Index Strength", | |
| value=0.5, | |
| interactive=True, | |
| ) | |
| vc_output2 = gr.Audio(label="Output") | |
| with gr.Accordion("General Settings", open=False): | |
| f0method0 = gr.Radio( | |
| label="Method", | |
| choices=["pm", "harvest", "crepe", "rmvpe"] | |
| if config.dml == False | |
| else ["pm", "harvest", "rmvpe"], | |
| value="rmvpe", | |
| interactive=True, | |
| ) | |
| filter_radius0 = gr.Slider( | |
| minimum=0, | |
| maximum=7, | |
| label="Breathiness Reduction (Harvest only)", | |
| value=3, | |
| step=1, | |
| interactive=True, | |
| ) | |
| resample_sr0 = gr.Slider( | |
| minimum=0, | |
| maximum=48000, | |
| label="Resample", | |
| value=0, | |
| step=1, | |
| interactive=True, | |
| visible=False | |
| ) | |
| rms_mix_rate0 = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| label="Volume Normalization", | |
| value=0, | |
| interactive=True, | |
| ) | |
| protect0 = gr.Slider( | |
| minimum=0, | |
| maximum=0.5, | |
| label="Breathiness Protection (0 is enabled, 0.5 is disabled)", | |
| value=0.33, | |
| step=0.01, | |
| interactive=True, | |
| ) | |
| if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0) | |
| file_index1 = gr.Textbox( | |
| label="Index Path", | |
| interactive=True, | |
| visible=False#Not used here | |
| ) | |
| refresh_button.click( | |
| fn=change_choices, | |
| inputs=[], | |
| outputs=[voice_model, file_index2], | |
| api_name="infer_refresh", | |
| ) | |
| refresh_button.click( | |
| fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac' | |
| inputs=[], | |
| outputs = [input_audio0], | |
| ) | |
| refresh_button.click( | |
| fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac' | |
| inputs=[], | |
| outputs = [input_audio0], | |
| ) | |
| with gr.Row(): | |
| f0_file = gr.File(label="F0 Path", visible=False) | |
| with gr.Row(): | |
| vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False) | |
| but0.click( | |
| vc.vc_single, | |
| [ | |
| spk_item, | |
| input_audio0, | |
| vc_transform0, | |
| f0_file, | |
| f0method0, | |
| file_index1, | |
| file_index2, | |
| index_rate1, | |
| filter_radius0, | |
| resample_sr0, | |
| rms_mix_rate0, | |
| protect0, | |
| ], | |
| [vc_output1, vc_output2], | |
| api_name="infer_convert", | |
| ) | |
| voice_model.change( | |
| fn=vc.get_vc, | |
| inputs=[voice_model, protect0, protect0], | |
| outputs=[spk_item, protect0, protect0, file_index2, file_index2], | |
| api_name="infer_change_voice", | |
| ) | |
| with gr.TabItem("Download Models"): | |
| with gr.Row(): | |
| url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6) | |
| name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2) | |
| url_download = gr.Button(value="Download Model",scale=2) | |
| url_download.click( | |
| inputs=[url_input,name_output], | |
| outputs=[url_input], | |
| fn=download_from_url, | |
| ) | |
| with gr.Row(): | |
| model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5) | |
| download_from_browser = gr.Button(value="Get",scale=2) | |
| download_from_browser.click( | |
| inputs=[model_browser], | |
| outputs=[model_browser], | |
| fn=lambda model: download_from_url(model_library.models[model],model), | |
| ) | |
| if config.iscolab: | |
| app.queue(concurrency_count=511, max_size=1022).launch(share=True) | |
| else: | |
| app.queue(concurrency_count=511, max_size=1022).launch( | |
| server_name="0.0.0.0", | |
| inbrowser=not config.noautoopen, | |
| server_port=config.listen_port, | |
| quiet=True, | |
| ) |