Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import os | |
| import pathlib | |
| import shlex | |
| import subprocess | |
| import sys | |
| if os.getenv("SYSTEM") == "spaces": | |
| import mim | |
| mim.uninstall("mmcv-full", confirm_yes=True) | |
| mim.install("mmcv-full==1.5.0", is_yes=True) | |
| subprocess.run(shlex.split("pip uninstall -y opencv-python")) | |
| subprocess.run(shlex.split("pip uninstall -y opencv-python-headless")) | |
| subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74")) | |
| with open("patch") as f: | |
| subprocess.run(shlex.split("patch -p1"), cwd="CBNetV2", stdin=f) | |
| subprocess.run("mv palette.py CBNetV2/mmdet/core/visualization/".split()) | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| app_dir = pathlib.Path(__file__).parent | |
| submodule_dir = app_dir / "CBNetV2/" | |
| sys.path.insert(0, submodule_dir.as_posix()) | |
| from mmdet.apis import inference_detector, init_detector | |
| class Model: | |
| def __init__(self): | |
| self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| self.models = self._load_models() | |
| self.model_name = "Improved HTC (DB-Swin-B)" | |
| def _load_models(self) -> dict[str, nn.Module]: | |
| model_dict = { | |
| "Faster R-CNN (DB-ResNet50)": { | |
| "config": "CBNetV2/configs/cbnet/faster_rcnn_cbv2d1_r50_fpn_1x_coco.py", | |
| "model": "https://github.com/CBNetwork/storage/releases/download/v1.0.0/faster_rcnn_cbv2d1_r50_fpn_1x_coco.pth.zip", | |
| }, | |
| "Mask R-CNN (DB-Swin-T)": { | |
| "config": "CBNetV2/configs/cbnet/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py", | |
| "model": "https://github.com/CBNetwork/storage/releases/download/v1.0.0/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.pth.zip", | |
| }, | |
| # 'Cascade Mask R-CNN (DB-Swin-S)': { | |
| # 'config': | |
| # 'CBNetV2/configs/cbnet/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.py', | |
| # 'model': | |
| # 'https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.pth.zip', | |
| # }, | |
| "Improved HTC (DB-Swin-B)": { | |
| "config": "CBNetV2/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py", | |
| "model": "https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.pth.zip", | |
| }, | |
| "Improved HTC (DB-Swin-L)": { | |
| "config": "CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py", | |
| "model": "https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip", | |
| }, | |
| "Improved HTC (DB-Swin-L (TTA))": { | |
| "config": "CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py", | |
| "model": "https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip", | |
| }, | |
| } | |
| weight_dir = pathlib.Path("weights") | |
| weight_dir.mkdir(exist_ok=True) | |
| def _download(model_name: str, out_dir: pathlib.Path) -> None: | |
| import zipfile | |
| model_url = model_dict[model_name]["model"] | |
| zip_name = model_url.split("/")[-1] | |
| out_path = out_dir / zip_name | |
| if out_path.exists(): | |
| return | |
| torch.hub.download_url_to_file(model_url, out_path) | |
| with zipfile.ZipFile(out_path) as f: | |
| f.extractall(out_dir) | |
| def _get_model_path(model_name: str) -> str: | |
| model_url = model_dict[model_name]["model"] | |
| model_name = model_url.split("/")[-1][:-4] | |
| return (weight_dir / model_name).as_posix() | |
| for model_name in model_dict: | |
| _download(model_name, weight_dir) | |
| models = { | |
| key: init_detector(dic["config"], _get_model_path(key), device=self.device) | |
| for key, dic in model_dict.items() | |
| } | |
| return models | |
| def set_model_name(self, name: str) -> None: | |
| self.model_name = name | |
| def detect_and_visualize(self, image: np.ndarray, score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]: | |
| out = self.detect(image) | |
| vis = self.visualize_detection_results(image, out, score_threshold) | |
| return out, vis | |
| def detect(self, image: np.ndarray) -> list[np.ndarray]: | |
| image = image[:, :, ::-1] # RGB -> BGR | |
| model = self.models[self.model_name] | |
| out = inference_detector(model, image) | |
| return out | |
| def visualize_detection_results( | |
| self, image: np.ndarray, detection_results: list[np.ndarray], score_threshold: float = 0.3 | |
| ) -> np.ndarray: | |
| image = image[:, :, ::-1] # RGB -> BGR | |
| model = self.models[self.model_name] | |
| vis = model.show_result( | |
| image, | |
| detection_results, | |
| score_thr=score_threshold, | |
| bbox_color=None, | |
| text_color=(200, 200, 200), | |
| mask_color=None, | |
| ) | |
| return vis[:, :, ::-1] # BGR -> RGB | |