Spaces:
Running
Running
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import os | |
| import pathlib | |
| import shlex | |
| import subprocess | |
| if os.getenv("SYSTEM") == "spaces": | |
| subprocess.run(shlex.split("pip install click==7.1.2")) | |
| subprocess.run(shlex.split("pip install typer==0.9.4")) | |
| import mim | |
| mim.uninstall("mmcv-full", confirm_yes=True) | |
| mim.install("mmcv-full==1.5.0", is_yes=True) | |
| subprocess.run(shlex.split("pip uninstall -y opencv-python")) | |
| subprocess.run(shlex.split("pip uninstall -y opencv-python-headless")) | |
| subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74")) | |
| with open("patch") as f: | |
| subprocess.run(shlex.split("patch -p1"), cwd="CBNetV2", stdin=f) | |
| subprocess.run("mv palette.py CBNetV2/mmdet/core/visualization/".split()) | |
| import gradio as gr | |
| from model import Model | |
| DESCRIPTION = "# [CBNetV2](https://github.com/VDIGPKU/CBNetV2)" | |
| model = Model() | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", type="numpy") | |
| with gr.Row(): | |
| detector_name = gr.Dropdown( | |
| label="Detector", choices=list(model.models.keys()), value=model.model_name | |
| ) | |
| with gr.Row(): | |
| detect_button = gr.Button("Detect") | |
| detection_results = gr.State() | |
| with gr.Column(): | |
| with gr.Row(): | |
| detection_visualization = gr.Image(label="Detection Result", type="numpy") | |
| with gr.Row(): | |
| visualization_score_threshold = gr.Slider( | |
| label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3 | |
| ) | |
| with gr.Row(): | |
| redraw_button = gr.Button("Redraw") | |
| with gr.Row(): | |
| paths = sorted(pathlib.Path("images").rglob("*.jpg")) | |
| gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image) | |
| detector_name.change(fn=model.set_model_name, inputs=detector_name) | |
| detect_button.click( | |
| fn=model.detect_and_visualize, | |
| inputs=[ | |
| input_image, | |
| visualization_score_threshold, | |
| ], | |
| outputs=[ | |
| detection_results, | |
| detection_visualization, | |
| ], | |
| ) | |
| redraw_button.click( | |
| fn=model.visualize_detection_results, | |
| inputs=[ | |
| input_image, | |
| detection_results, | |
| visualization_score_threshold, | |
| ], | |
| outputs=detection_visualization, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch() | |