Spaces:
Running
Running
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import argparse | |
| import os | |
| import sys | |
| from typing import Callable | |
| import dlib | |
| import gradio as gr | |
| import huggingface_hub | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn as nn | |
| import torchvision.transforms as T | |
| if os.environ.get('SYSTEM') == 'spaces': | |
| os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py") | |
| os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py") | |
| sys.path.insert(0, 'DualStyleGAN') | |
| from model.dualstylegan import DualStyleGAN | |
| from model.encoder.align_all_parallel import align_face | |
| from model.encoder.psp import pSp | |
| TOKEN = os.environ['TOKEN'] | |
| MODEL_REPO = 'hysts/DualStyleGAN' | |
| def parse_args() -> argparse.Namespace: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--device', type=str, default='cpu') | |
| parser.add_argument('--theme', type=str) | |
| parser.add_argument('--share', action='store_true') | |
| parser.add_argument('--port', type=int) | |
| parser.add_argument('--disable-queue', | |
| dest='enable_queue', | |
| action='store_false') | |
| return parser.parse_args() | |
| class App: | |
| def __init__(self, device: torch.device): | |
| self.device = device | |
| self.landmark_model = self._create_dlib_landmark_model() | |
| self.encoder = self._load_encoder() | |
| self.transform = self._create_transform() | |
| self.style_types = [ | |
| 'cartoon', | |
| 'caricature', | |
| 'anime', | |
| 'arcane', | |
| 'comic', | |
| 'pixar', | |
| 'slamdunk', | |
| ] | |
| self.generator_dict = { | |
| style_type: self._load_generator(style_type) | |
| for style_type in self.style_types | |
| } | |
| self.exstyle_dict = { | |
| style_type: self._load_exstylecode(style_type) | |
| for style_type in self.style_types | |
| } | |
| def _create_dlib_landmark_model(): | |
| path = huggingface_hub.hf_hub_download( | |
| 'hysts/dlib_face_landmark_model', | |
| 'shape_predictor_68_face_landmarks.dat', | |
| use_auth_token=TOKEN) | |
| return dlib.shape_predictor(path) | |
| def _load_encoder(self) -> nn.Module: | |
| ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
| 'models/encoder.pt', | |
| use_auth_token=TOKEN) | |
| ckpt = torch.load(ckpt_path, map_location='cpu') | |
| opts = ckpt['opts'] | |
| opts['device'] = self.device.type | |
| opts['checkpoint_path'] = ckpt_path | |
| opts = argparse.Namespace(**opts) | |
| model = pSp(opts) | |
| model.to(self.device) | |
| model.eval() | |
| return model | |
| def _create_transform() -> Callable: | |
| transform = T.Compose([ | |
| T.Resize(256), | |
| T.CenterCrop(256), | |
| T.ToTensor(), | |
| T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| ]) | |
| return transform | |
| def _load_generator(self, style_type: str) -> nn.Module: | |
| model = DualStyleGAN(1024, 512, 8, 2, res_index=6) | |
| ckpt_path = huggingface_hub.hf_hub_download( | |
| MODEL_REPO, | |
| f'models/{style_type}/generator.pt', | |
| use_auth_token=TOKEN) | |
| ckpt = torch.load(ckpt_path, map_location='cpu') | |
| model.load_state_dict(ckpt['g_ema']) | |
| model.to(self.device) | |
| model.eval() | |
| return model | |
| def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]: | |
| if style_type in ['cartoon', 'caricature', 'anime']: | |
| filename = 'refined_exstyle_code.npy' | |
| else: | |
| filename = 'exstyle_code.npy' | |
| path = huggingface_hub.hf_hub_download( | |
| MODEL_REPO, | |
| f'models/{style_type}/{filename}', | |
| use_auth_token=TOKEN) | |
| exstyles = np.load(path, allow_pickle=True).item() | |
| return exstyles | |
| def detect_and_align_face(self, image) -> np.ndarray: | |
| image = align_face(filepath=image.name, predictor=self.landmark_model) | |
| return image | |
| def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
| return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
| def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
| tensor = self.denormalize(tensor) | |
| return tensor.cpu().numpy().transpose(1, 2, 0) | |
| def reconstruct_face(self, | |
| image: np.ndarray) -> tuple[np.ndarray, torch.Tensor]: | |
| image = PIL.Image.fromarray(image) | |
| input_data = self.transform(image).unsqueeze(0).to(self.device) | |
| img_rec, instyle = self.encoder(input_data, | |
| randomize_noise=False, | |
| return_latents=True, | |
| z_plus_latent=True, | |
| return_z_plus_latent=True, | |
| resize=False) | |
| img_rec = torch.clamp(img_rec.detach(), -1, 1) | |
| img_rec = self.postprocess(img_rec[0]) | |
| return img_rec, instyle | |
| def generate(self, style_type: str, style_id: int, structure_weight: float, | |
| color_weight: float, structure_only: bool, | |
| instyle: torch.Tensor) -> np.ndarray: | |
| generator = self.generator_dict[style_type] | |
| exstyles = self.exstyle_dict[style_type] | |
| style_id = int(style_id) | |
| stylename = list(exstyles.keys())[style_id] | |
| latent = torch.tensor(exstyles[stylename]).to(self.device) | |
| if structure_only: | |
| latent[0, 7:18] = instyle[0, 7:18] | |
| exstyle = generator.generator.style( | |
| latent.reshape(latent.shape[0] * latent.shape[1], | |
| latent.shape[2])).reshape(latent.shape) | |
| img_gen, _ = generator([instyle], | |
| exstyle, | |
| z_plus_latent=True, | |
| truncation=0.7, | |
| truncation_latent=0, | |
| use_res=True, | |
| interp_weights=[structure_weight] * 7 + | |
| [color_weight] * 11) | |
| img_gen = torch.clamp(img_gen.detach(), -1, 1) | |
| img_gen = self.postprocess(img_gen[0]) | |
| return img_gen | |
| def get_style_image_url(style_name: str) -> str: | |
| base_url = 'https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images' | |
| filenames = { | |
| 'cartoon': 'cartoon_overview.jpg', | |
| 'caricature': 'caricature_overview.jpg', | |
| 'anime': 'anime_overview.jpg', | |
| 'arcane': 'Reconstruction_arcane_overview.jpg', | |
| 'comic': 'Reconstruction_comic_overview.jpg', | |
| 'pixar': 'Reconstruction_pixar_overview.jpg', | |
| 'slamdunk': 'Reconstruction_slamdunk_overview.jpg', | |
| } | |
| return f'{base_url}/{filenames[style_name]}' | |
| def get_style_image_markdown_text(style_name: str) -> str: | |
| url = get_style_image_url(style_name) | |
| return f'<center><img id="style-image" src="{url}" alt="style image"></center>' | |
| def update_slider(choice: str) -> dict: | |
| max_vals = { | |
| 'cartoon': 316, | |
| 'caricature': 198, | |
| 'anime': 173, | |
| 'arcane': 99, | |
| 'comic': 100, | |
| 'pixar': 121, | |
| 'slamdunk': 119, | |
| } | |
| return gr.Slider.update(maximum=max_vals[choice], value=26) | |
| def update_style_image(style_name: str) -> dict: | |
| text = get_style_image_markdown_text(style_name) | |
| return gr.Markdown.update(value=text) | |
| def main(): | |
| args = parse_args() | |
| app = App(device=torch.device(args.device)) | |
| css = ''' | |
| h1#title { | |
| text-align: center; | |
| } | |
| img#overview { | |
| max-width: 800px; | |
| max-height: 600px; | |
| } | |
| img#style-image { | |
| max-width: 1000px; | |
| max-height: 600px; | |
| } | |
| ''' | |
| with gr.Blocks(theme=args.theme, css=css) as demo: | |
| gr.Markdown( | |
| '''<h1 id="title">Portrait Style Transfer with DualStyleGAN</h1> | |
| This is an unofficial demo app for [https://github.com/williamyang1991/DualStyleGAN](https://github.com/williamyang1991/DualStyleGAN). | |
| <center><img id="overview" src="https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images/overview.jpg" alt="overview"></center> | |
| ''') | |
| with gr.Box(): | |
| gr.Markdown('''## Step 1 (Preprocess Input Image) | |
| - Drop an image containing a near-frontal face to the **Input Image**. | |
| - If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand. | |
| - Hit the **Detect & Align** button. | |
| - Hit the **Reconstruct Face** button. | |
| - The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image. | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label='Input Image', | |
| type='file') | |
| with gr.Row(): | |
| detect_button = gr.Button('Detect & Align Face') | |
| with gr.Column(): | |
| with gr.Row(): | |
| face_image = gr.Image(label='Aligned Face', | |
| type='numpy') | |
| with gr.Row(): | |
| reconstruct_button = gr.Button('Reconstruct Face') | |
| with gr.Column(): | |
| reconstructed_face = gr.Image(label='Reconstructed Face', | |
| type='numpy') | |
| instyle = gr.Variable() | |
| with gr.Box(): | |
| gr.Markdown('''## Step 2 (Select Style Image) | |
| - Select **Style Type**. | |
| - Select **Style Image Index** from the image table below. | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| style_type = gr.Radio(app.style_types, label='Style Type') | |
| text = get_style_image_markdown_text('cartoon') | |
| style_image = gr.Markdown(value=text) | |
| style_index = gr.Slider(0, | |
| 316, | |
| value=26, | |
| step=1, | |
| label='Style Image Index', | |
| interactive=True) | |
| with gr.Box(): | |
| gr.Markdown('''## Step 3 (Generate Style Transferred Image) | |
| - Adjust **Structure Weight** and **Color Weight**. | |
| - These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image. | |
| - Hit the **Generate** button. | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| structure_weight = gr.Slider(0, | |
| 1, | |
| value=0.6, | |
| step=0.1, | |
| label='Structure Weight') | |
| with gr.Row(): | |
| color_weight = gr.Slider(0, | |
| 1, | |
| value=1, | |
| step=0.1, | |
| label='Color Weight') | |
| with gr.Row(): | |
| structure_only = gr.Checkbox(label='Structure Only') | |
| with gr.Row(): | |
| generate_button = gr.Button('Generate') | |
| with gr.Column(): | |
| output_image = gr.Image(label='Output Image') | |
| gr.Markdown( | |
| 'Related App: [https://huggingface.co/spaces/hysts/DualStyleGAN](https://huggingface.co/spaces/hysts/DualStyleGAN)') | |
| gr.Markdown( | |
| '<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.dualstylegan" alt="visitor badge"/></center>' | |
| ) | |
| detect_button.click(fn=app.detect_and_align_face, | |
| inputs=input_image, | |
| outputs=face_image) | |
| reconstruct_button.click(fn=app.reconstruct_face, | |
| inputs=face_image, | |
| outputs=[reconstructed_face, instyle]) | |
| style_type.change(fn=update_slider, | |
| inputs=style_type, | |
| outputs=style_index) | |
| style_type.change(fn=update_style_image, | |
| inputs=style_type, | |
| outputs=style_image) | |
| generate_button.click(fn=app.generate, | |
| inputs=[ | |
| style_type, | |
| style_index, | |
| structure_weight, | |
| color_weight, | |
| structure_only, | |
| instyle, | |
| ], | |
| outputs=output_image) | |
| demo.launch( | |
| enable_queue=args.enable_queue, | |
| server_port=args.port, | |
| share=args.share, | |
| ) | |
| if __name__ == '__main__': | |
| main() | |