Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import argparse | |
| import os | |
| import pathlib | |
| import subprocess | |
| import sys | |
| from typing import Callable, Union | |
| import dlib | |
| import huggingface_hub | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn as nn | |
| import torchvision.transforms as T | |
| if os.getenv("SYSTEM") == "spaces" and not torch.cuda.is_available(): | |
| with open("patch.e4e") as f: | |
| subprocess.run("patch -p1".split(), cwd="encoder4editing", stdin=f) | |
| with open("patch.hairclip") as f: | |
| subprocess.run("patch -p1".split(), cwd="HairCLIP", stdin=f) | |
| app_dir = pathlib.Path(__file__).parent | |
| e4e_dir = app_dir / "encoder4editing" | |
| sys.path.insert(0, e4e_dir.as_posix()) | |
| from models.psp import pSp | |
| from utils.alignment import align_face | |
| hairclip_dir = app_dir / "HairCLIP" | |
| mapper_dir = hairclip_dir / "mapper" | |
| sys.path.insert(0, hairclip_dir.as_posix()) | |
| sys.path.insert(0, mapper_dir.as_posix()) | |
| from mapper.datasets.latents_dataset_inference import LatentsDatasetInference | |
| from mapper.hairclip_mapper import HairCLIPMapper | |
| class Model: | |
| def __init__(self): | |
| self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| self.landmark_model = self._create_dlib_landmark_model() | |
| self.e4e = self._load_e4e() | |
| self.hairclip = self._load_hairclip() | |
| self.transform = self._create_transform() | |
| def _create_dlib_landmark_model(): | |
| path = huggingface_hub.hf_hub_download( | |
| "public-data/dlib_face_landmark_model", "shape_predictor_68_face_landmarks.dat" | |
| ) | |
| return dlib.shape_predictor(path) | |
| def _load_e4e(self) -> nn.Module: | |
| ckpt_path = huggingface_hub.hf_hub_download("public-data/e4e", "e4e_ffhq_encode.pt") | |
| ckpt = torch.load(ckpt_path, map_location="cpu") | |
| opts = ckpt["opts"] | |
| opts["device"] = self.device.type | |
| opts["checkpoint_path"] = ckpt_path | |
| opts = argparse.Namespace(**opts) | |
| model = pSp(opts) | |
| model.to(self.device) | |
| model.eval() | |
| return model | |
| def _load_hairclip(self) -> nn.Module: | |
| ckpt_path = huggingface_hub.hf_hub_download("public-data/HairCLIP", "hairclip.pt") | |
| ckpt = torch.load(ckpt_path, map_location="cpu") | |
| opts = ckpt["opts"] | |
| opts["device"] = self.device.type | |
| opts["checkpoint_path"] = ckpt_path | |
| opts["editing_type"] = "both" | |
| opts["input_type"] = "text" | |
| opts["hairstyle_description"] = "HairCLIP/mapper/hairstyle_list.txt" | |
| opts["color_description"] = "red" | |
| opts = argparse.Namespace(**opts) | |
| model = HairCLIPMapper(opts) | |
| model.to(self.device) | |
| model.eval() | |
| return model | |
| def _create_transform() -> Callable: | |
| transform = T.Compose( | |
| [ | |
| T.Resize(256), | |
| T.CenterCrop(256), | |
| T.ToTensor(), | |
| T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| ] | |
| ) | |
| return transform | |
| def detect_and_align_face(self, image: str) -> PIL.Image.Image: | |
| image = align_face(filepath=image, predictor=self.landmark_model) | |
| return image | |
| def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
| return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
| def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
| tensor = self.denormalize(tensor) | |
| return tensor.cpu().numpy().transpose(1, 2, 0) | |
| def reconstruct_face(self, image: PIL.Image.Image) -> tuple[np.ndarray, torch.Tensor]: | |
| input_data = self.transform(image).unsqueeze(0).to(self.device) | |
| reconstructed_images, latents = self.e4e(input_data, randomize_noise=False, return_latents=True) | |
| reconstructed = torch.clamp(reconstructed_images[0].detach(), -1, 1) | |
| reconstructed = self.postprocess(reconstructed) | |
| return reconstructed, latents[0] | |
| def generate( | |
| self, editing_type: str, hairstyle_index: int, color_description: str, latent: torch.Tensor | |
| ) -> np.ndarray: | |
| opts = self.hairclip.opts | |
| opts.editing_type = editing_type | |
| opts.color_description = color_description | |
| if editing_type == "color": | |
| hairstyle_index = 0 | |
| device = torch.device(opts.device) | |
| dataset = LatentsDatasetInference(latents=latent.unsqueeze(0).cpu(), opts=opts) | |
| w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3] | |
| w = w.unsqueeze(0).to(device) | |
| hairstyle_text_inputs = hairstyle_text_inputs_list[hairstyle_index].unsqueeze(0).to(device) | |
| color_text_inputs = color_text_inputs_list[0].unsqueeze(0).to(device) | |
| hairstyle_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device) | |
| color_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device) | |
| w_hat = w + 0.1 * self.hairclip.mapper( | |
| w, | |
| hairstyle_text_inputs, | |
| color_text_inputs, | |
| hairstyle_tensor_hairmasked, | |
| color_tensor_hairmasked, | |
| ) | |
| x_hat, _ = self.hairclip.decoder( | |
| [w_hat], | |
| input_is_latent=True, | |
| return_latents=True, | |
| randomize_noise=False, | |
| truncation=1, | |
| ) | |
| res = torch.clamp(x_hat[0].detach(), -1, 1) | |
| res = self.postprocess(res) | |
| return res | |