Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gradio as gr
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import requests, validators
|
| 5 |
import torch
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
|
| 8 |
|
|
@@ -51,7 +52,7 @@ def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
|
|
| 51 |
plt.axis("off")
|
| 52 |
return fig2img(plt.gcf())
|
| 53 |
|
| 54 |
-
def
|
| 55 |
|
| 56 |
#Extract model and feature extractor
|
| 57 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
@@ -66,29 +67,8 @@ def detect_objects_from_url(model_name,url,threshold):
|
|
| 66 |
|
| 67 |
if url and validators.url(url):
|
| 68 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 69 |
-
|
| 70 |
-
#Make prediction
|
| 71 |
-
processed_outputs = make_prediction(image, feature_extractor, model)
|
| 72 |
-
|
| 73 |
-
#Visualize prediction
|
| 74 |
-
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 75 |
-
|
| 76 |
-
return viz_img
|
| 77 |
-
|
| 78 |
-
def detect_objects_from_upload(model_name,image_upload,threshold):
|
| 79 |
-
|
| 80 |
-
#Extract model and feature extractor
|
| 81 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 82 |
-
|
| 83 |
-
if 'detr' in model_name:
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
elif 'yolos' in model_name:
|
| 88 |
-
|
| 89 |
-
model = YolosForObjectDetection.from_pretrained(model_name)
|
| 90 |
-
|
| 91 |
-
if image_upload:
|
| 92 |
image = image_upload
|
| 93 |
|
| 94 |
#Make prediction
|
|
@@ -97,13 +77,13 @@ def detect_objects_from_upload(model_name,image_upload,threshold):
|
|
| 97 |
#Visualize prediction
|
| 98 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 99 |
|
| 100 |
-
return viz_img
|
| 101 |
-
|
| 102 |
#examples=[['facebook/detr-resnet-50','https://media-cldnry.s-nbcnews.com/image/upload/t_fit-1500w,f_auto,q_auto:best/newscms/2020_14/3290756/200331-wall-street-ew-#343p.jpg',,0.7]
|
| 103 |
|
| 104 |
|
| 105 |
|
| 106 |
-
title =
|
| 107 |
|
| 108 |
description = """
|
| 109 |
Links to HuggingFace Models:
|
|
@@ -131,6 +111,12 @@ with demo:
|
|
| 131 |
with gr.Row():
|
| 132 |
url_input = gr.Textbox(lines=1,label='Enter valid image URL here..')
|
| 133 |
img_output_from_url = gr.Image(shape=(450,450))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
url_but = gr.Button('Detect')
|
| 136 |
|
|
@@ -139,11 +125,17 @@ with demo:
|
|
| 139 |
img_input = gr.Image(type='pil')
|
| 140 |
img_output_from_upload= gr.Image(shape=(450,450))
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
img_but = gr.Button('Detect')
|
| 143 |
|
| 144 |
|
| 145 |
-
url_but.click(
|
| 146 |
-
img_but.click(
|
| 147 |
|
| 148 |
|
| 149 |
demo.launch(enable_queue=True)
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import requests, validators
|
| 5 |
import torch
|
| 6 |
+
import pathlib
|
| 7 |
from PIL import Image
|
| 8 |
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
|
| 9 |
|
|
|
|
| 52 |
plt.axis("off")
|
| 53 |
return fig2img(plt.gcf())
|
| 54 |
|
| 55 |
+
def detect_objects(model_name,url_input,image_input,threshold):
|
| 56 |
|
| 57 |
#Extract model and feature extractor
|
| 58 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
|
|
| 67 |
|
| 68 |
if url and validators.url(url):
|
| 69 |
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
elif image_upload:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
image = image_upload
|
| 73 |
|
| 74 |
#Make prediction
|
|
|
|
| 77 |
#Visualize prediction
|
| 78 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 79 |
|
| 80 |
+
return viz_img
|
| 81 |
+
|
| 82 |
#examples=[['facebook/detr-resnet-50','https://media-cldnry.s-nbcnews.com/image/upload/t_fit-1500w,f_auto,q_auto:best/newscms/2020_14/3290756/200331-wall-street-ew-#343p.jpg',,0.7]
|
| 83 |
|
| 84 |
|
| 85 |
|
| 86 |
+
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
|
| 87 |
|
| 88 |
description = """
|
| 89 |
Links to HuggingFace Models:
|
|
|
|
| 111 |
with gr.Row():
|
| 112 |
url_input = gr.Textbox(lines=1,label='Enter valid image URL here..')
|
| 113 |
img_output_from_url = gr.Image(shape=(450,450))
|
| 114 |
+
|
| 115 |
+
with gr.Row():
|
| 116 |
+
urls = ["https://media-cldnry.s-nbcnews.com/image/upload/t_fit-1500w,f_auto,q_auto:best/newscms/2020_14/3290756/200331-wall-street-ew-#343p.jpg"]
|
| 117 |
+
example_url = gr.Dataset(components=[url_input],
|
| 118 |
+
samples=[[url.as_posix()]
|
| 119 |
+
for url in urls])
|
| 120 |
|
| 121 |
url_but = gr.Button('Detect')
|
| 122 |
|
|
|
|
| 125 |
img_input = gr.Image(type='pil')
|
| 126 |
img_output_from_upload= gr.Image(shape=(450,450))
|
| 127 |
|
| 128 |
+
with gr.Row():
|
| 129 |
+
paths = sorted(pathlib.Path('images').rglob('*.JPG')
|
| 130 |
+
example_images = gr.Dataset(components=[img_input],
|
| 131 |
+
samples=[[path.as_posix()]
|
| 132 |
+
for path in paths])
|
| 133 |
+
|
| 134 |
img_but = gr.Button('Detect')
|
| 135 |
|
| 136 |
|
| 137 |
+
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
|
| 138 |
+
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
| 139 |
|
| 140 |
|
| 141 |
demo.launch(enable_queue=True)
|