Spaces:
Runtime error
Runtime error
| """ | |
| Generate a large batch of image samples from a model and save them as a large | |
| numpy array. This can be used to produce samples for FID evaluation. | |
| """ | |
| import argparse | |
| import os | |
| import numpy as np | |
| import torch as th | |
| import torch.distributed as dist | |
| from pixel_guide_diffusion import dist_util, logger | |
| from pixel_guide_diffusion.script_util import ( | |
| NUM_CLASSES, | |
| model_and_diffusion_defaults, | |
| create_model_and_diffusion, | |
| add_dict_to_argparser, | |
| args_to_dict, | |
| ) | |
| def main(): | |
| args = create_argparser().parse_args() | |
| dist_util.setup_dist() | |
| logger.configure() | |
| logger.log("creating model and diffusion...") | |
| model, diffusion = create_model_and_diffusion( | |
| **args_to_dict(args, model_and_diffusion_defaults().keys()) | |
| ) | |
| model.load_state_dict( | |
| dist_util.load_state_dict(args.model_path, map_location="cpu") | |
| ) | |
| model.to(dist_util.dev()) | |
| model.eval() | |
| logger.log("sampling...") | |
| all_images = [] | |
| all_labels = [] | |
| while len(all_images) * args.batch_size < args.num_samples: | |
| model_kwargs = {} | |
| if args.class_cond: | |
| classes = th.randint( | |
| low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev() | |
| ) | |
| model_kwargs["y"] = classes | |
| sample_fn = ( | |
| diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop | |
| ) | |
| sample = sample_fn( | |
| model, | |
| (args.batch_size, 3, args.image_size, args.image_size), | |
| clip_denoised=args.clip_denoised, | |
| model_kwargs=model_kwargs, | |
| ) | |
| sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8) | |
| sample = sample.permute(0, 2, 3, 1) | |
| sample = sample.contiguous() | |
| gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())] | |
| dist.all_gather(gathered_samples, sample) # gather not supported with NCCL | |
| all_images.extend([sample.cpu().numpy() for sample in gathered_samples]) | |
| if args.class_cond: | |
| gathered_labels = [ | |
| th.zeros_like(classes) for _ in range(dist.get_world_size()) | |
| ] | |
| dist.all_gather(gathered_labels, classes) | |
| all_labels.extend([labels.cpu().numpy() for labels in gathered_labels]) | |
| logger.log(f"created {len(all_images) * args.batch_size} samples") | |
| arr = np.concatenate(all_images, axis=0) | |
| arr = arr[: args.num_samples] | |
| if args.class_cond: | |
| label_arr = np.concatenate(all_labels, axis=0) | |
| label_arr = label_arr[: args.num_samples] | |
| if dist.get_rank() == 0: | |
| shape_str = "x".join([str(x) for x in arr.shape]) | |
| out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz") | |
| logger.log(f"saving to {out_path}") | |
| if args.class_cond: | |
| np.savez(out_path, arr, label_arr) | |
| else: | |
| np.savez(out_path, arr) | |
| dist.barrier() | |
| logger.log("sampling complete") | |
| def create_argparser(): | |
| defaults = dict( | |
| clip_denoised=True, | |
| num_samples=10000, | |
| batch_size=16, | |
| use_ddim=False, | |
| model_path="", | |
| ) | |
| defaults.update(model_and_diffusion_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| main() | |