Spaces:
Runtime error
Runtime error
| """ | |
| Generate a large batch of samples from a super resolution model, given a batch | |
| of samples from a regular model from image_sample.py. | |
| """ | |
| import argparse | |
| import os | |
| import blobfile as bf | |
| import numpy as np | |
| import torch as th | |
| import torch.distributed as dist | |
| from pixel_guide_diffusion import dist_util, logger | |
| from pixel_guide_diffusion.script_util import ( | |
| sr_model_and_diffusion_defaults, | |
| sr_create_model_and_diffusion, | |
| args_to_dict, | |
| add_dict_to_argparser, | |
| ) | |
| def main(): | |
| args = create_argparser().parse_args() | |
| dist_util.setup_dist() | |
| logger.configure() | |
| logger.log("creating model...") | |
| model, diffusion = sr_create_model_and_diffusion( | |
| **args_to_dict(args, sr_model_and_diffusion_defaults().keys()) | |
| ) | |
| model.load_state_dict( | |
| dist_util.load_state_dict(args.model_path, map_location="cpu") | |
| ) | |
| model.to(dist_util.dev()) | |
| model.eval() | |
| logger.log("loading data...") | |
| data = load_data_for_worker(args.base_samples, args.batch_size, args.class_cond) | |
| logger.log("creating samples...") | |
| all_images = [] | |
| while len(all_images) * args.batch_size < args.num_samples: | |
| model_kwargs = next(data) | |
| model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()} | |
| sample = diffusion.p_sample_loop( | |
| model, | |
| (args.batch_size, 3, args.large_size, args.large_size), | |
| clip_denoised=args.clip_denoised, | |
| model_kwargs=model_kwargs, | |
| ) | |
| sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8) | |
| sample = sample.permute(0, 2, 3, 1) | |
| sample = sample.contiguous() | |
| all_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())] | |
| dist.all_gather(all_samples, sample) # gather not supported with NCCL | |
| for sample in all_samples: | |
| all_images.append(sample.cpu().numpy()) | |
| logger.log(f"created {len(all_images) * args.batch_size} samples") | |
| arr = np.concatenate(all_images, axis=0) | |
| arr = arr[: args.num_samples] | |
| if dist.get_rank() == 0: | |
| shape_str = "x".join([str(x) for x in arr.shape]) | |
| out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz") | |
| logger.log(f"saving to {out_path}") | |
| np.savez(out_path, arr) | |
| dist.barrier() | |
| logger.log("sampling complete") | |
| def load_data_for_worker(base_samples, batch_size, class_cond): | |
| with bf.BlobFile(base_samples, "rb") as f: | |
| obj = np.load(f) | |
| image_arr = obj["arr_0"] | |
| if class_cond: | |
| label_arr = obj["arr_1"] | |
| rank = dist.get_rank() | |
| num_ranks = dist.get_world_size() | |
| buffer = [] | |
| label_buffer = [] | |
| while True: | |
| for i in range(rank, len(image_arr), num_ranks): | |
| buffer.append(image_arr[i]) | |
| if class_cond: | |
| label_buffer.append(label_arr[i]) | |
| if len(buffer) == batch_size: | |
| batch = th.from_numpy(np.stack(buffer)).float() | |
| batch = batch / 127.5 - 1.0 | |
| batch = batch.permute(0, 3, 1, 2) | |
| res = dict(low_res=batch) | |
| if class_cond: | |
| res["y"] = th.from_numpy(np.stack(label_buffer)) | |
| yield res | |
| buffer, label_buffer = [], [] | |
| def create_argparser(): | |
| defaults = dict( | |
| clip_denoised=True, | |
| num_samples=10000, | |
| batch_size=16, | |
| use_ddim=False, | |
| base_samples="", | |
| model_path="", | |
| ) | |
| defaults.update(sr_model_and_diffusion_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| main() | |