Spaces:
Runtime error
Runtime error
| """ | |
| Train a super-resolution model. | |
| """ | |
| import argparse | |
| import torch.nn.functional as F | |
| from pixel_guide_diffusion import dist_util, logger | |
| from pixel_guide_diffusion.image_datasets import load_data | |
| from pixel_guide_diffusion.resample import create_named_schedule_sampler | |
| from pixel_guide_diffusion.script_util import ( | |
| sr_model_and_diffusion_defaults, | |
| sr_create_model_and_diffusion, | |
| args_to_dict, | |
| add_dict_to_argparser, | |
| ) | |
| from pixel_guide_diffusion.train_util import TrainLoop | |
| def main(): | |
| args = create_argparser().parse_args() | |
| dist_util.setup_dist() | |
| logger.configure() | |
| logger.log("creating model...") | |
| model, diffusion = sr_create_model_and_diffusion( | |
| **args_to_dict(args, sr_model_and_diffusion_defaults().keys()) | |
| ) | |
| model.to(dist_util.dev()) | |
| schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
| logger.log("creating data loader...") | |
| data = load_superres_data( | |
| args.data_dir, | |
| args.batch_size, | |
| large_size=args.large_size, | |
| small_size=args.small_size, | |
| class_cond=args.class_cond, | |
| ) | |
| logger.log("training...") | |
| TrainLoop( | |
| model=model, | |
| diffusion=diffusion, | |
| data=data, | |
| batch_size=args.batch_size, | |
| microbatch=args.microbatch, | |
| lr=args.lr, | |
| ema_rate=args.ema_rate, | |
| log_interval=args.log_interval, | |
| save_interval=args.save_interval, | |
| resume_checkpoint=args.resume_checkpoint, | |
| use_fp16=args.use_fp16, | |
| fp16_scale_growth=args.fp16_scale_growth, | |
| schedule_sampler=schedule_sampler, | |
| weight_decay=args.weight_decay, | |
| lr_anneal_steps=args.lr_anneal_steps, | |
| ).run_loop() | |
| def load_superres_data(data_dir, batch_size, large_size, small_size, class_cond=False): | |
| data = load_data( | |
| data_dir=data_dir, | |
| batch_size=batch_size, | |
| image_size=large_size, | |
| class_cond=class_cond, | |
| ) | |
| for large_batch, model_kwargs in data: | |
| model_kwargs["low_res"] = F.interpolate(large_batch, small_size, mode="area") | |
| yield large_batch, model_kwargs | |
| def create_argparser(): | |
| defaults = dict( | |
| data_dir="", | |
| schedule_sampler="uniform", | |
| lr=1e-4, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| batch_size=1, | |
| microbatch=-1, | |
| ema_rate="0.9999", | |
| log_interval=10, | |
| save_interval=10000, | |
| resume_checkpoint="", | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| ) | |
| defaults.update(sr_model_and_diffusion_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| main() | |